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Abstract
The QUEST model of question answering is a computational-cognitive model designed to describe
a person’s mental narrative comprehension process, which predicts behavioral responses to open-
ended questions about the narrative. The model is based around a QUEST knowledge structure,
a directed graph that captures the story’s events and the causal and goal-oriented relationships
between them. We present a family of computational methods to transform an automated planning
narrative knowledge representation that has been successfully used for computational narrative
generation, to a QUEST knowledge structure. We then report an experiment to test the hypothesis
that these plan-driven knowledge structures have a meaningful relationship with a story consumer’s
comprehension of a narrative. The results help advance a research agenda that uses cognitive states
as the target of computationally generated narratives.

1. Introduction

Narratologists (Boyd, 2009; Herman, 2013) and artificial intelligence (AI) researchers (Gervás,
2009; Winston, 2012; Mueller, 2013) suggest that narrative intelligence (i.e., generation and com-
prehension) depends on competencies that distinguish us from our primate relatives. Stories play
a foundational role in our cognition and they are ubiquitous, serving as a target of interpretation
and as a framework to understand the world around us (Schank, 1990; Herman, 2013). Driven by
recognition that the study of narrative is a worthwhile endeavor and that computational modeling
is well suited to understand this complex human phenomenon (Simon, 1996), the field of computa-
tional models of narrative has progressed primarily on the two fronts that make up the enterprise of
narrative intelligence: narrative generation and narrative comprehension (Mueller, 2013). This work
synthesizes these threads, enabling comprehension-driven computational models of narrative gener-
ation, by presenting methods that map an automated planning model of narrative generation (Riedl
& Young, 2010) to a question-answering based model of narrative comprehension (Graesser &
Franklin, 1990).

1. The authors contributed equally to the work presented here and should be considered co-first authors.
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Our computational account of narrative generation leverages automated planning to model as-
pects of reasoning about stories and discourse about them (Young et al., 2013). This planning-based
knowledge representation is well-suited for modeling key structural aspects of narrative, explicitly
representing the causal and temporal structures of a plot (Young, 1999). However, key to narrative
generation is modeling of the mind as it makes sense of stories. As people consume a narrative,
their story comprehension faculties project a fictional world (Gerrig & Wenzel, 2015) that influences
how they expect the future of the narrative to unfold, and transitively, their cognitive and affective
responses. Concordantly, authors design stories to affect their audience in specific ways (Bordwell,
1989). Because the fundamental design criteria for a narrative artifact rest in the cognitive and
affective responses they prompt in human consumers, computational models of narrative must go
beyond story structure (Gervás, 2009). Minimally, we care about generating narratives that are
comprehended in terms of causal relationships and goal-oriented structures. The work presented
here is a step in service of this directive: to generate stories that elicit a specific effect (i.e., cognitive
state) in the human consumer, we evaluate how well the data structures used to drive a narrative’s
generation can themselves model the comprehension process of of the generated narrative.

For this, we map narrative planning data structures to a computational model of narrative
comprehension: the QUEST cognitive model of question answering (Graesser & Franklin, 1990).
QUEST describes a story consumer’s narrative comprehension process as measured through their
ability to answer questions. This model posits that as a person consumes a narrative, she constructs
a QUEST knowledge structure (QKS), a mental model that can be manipulated symbolically to
return answers to specific queries. A series of studies (Graesser & Murachver, 1985; Graesser &
Franklin, 1990; Graesser et al., 1991) designed to validate QUEST as a cognitive model of question
answering used manually generated QKSs for each story. In this work, we present a mechanism to
transform narrative planning data structures to QKSs. While we cannot compare the automatically
generated QKSs to the hand-generated ones directly, we present an experiment that demonstrates
our QKSs have explanatory and predictive power like the hand-generated structures used in the
original QUEST studies.

There are several challenges in mapping one representation to another, mostly borne of the
fact that the narrative planning and QUEST models were developed independently. First, some
interpretation is required in order to establish semantic equivalence between the data structures
of one model and those of the other. Second, while the planning data structures have a clear
semantic interpretation, the QUEST model leaves some of their semantics underspecified. There
are many candidate mappings that could be developed to go between the models and each mapping
might serve different explanatory uses. In this work, we present three mappings – two developed
previously (Christian & Young, 2004; Riedl, 2004) and one novel that builds upon prior work – that
transform narrative planning data structures to their corresponding QKSs. These let us contrast their
performance vis-á-vis predicting question-answering mechanisms in human story consumers.

The contributions of this paper are thus threefold: (a) we describe three techniques (two pre-
viously described by others) that map a planning-based narrative knowledge representation to a
cognitive structure (i.e., QUEST knowledge structure), (b) we present the results of an experiment
that demonstrate that the automatically generated QKSs can predict human responses to questions
in a manner comparable to the hand-authored QKSs used in the original experiment by Graesser et
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Table 1. The Crown Heist Story, an automatically generated narrative rendered as text.

This is a story about how Ethan was holding the Crown, Ethan was safe, Frank was safe and
the vault holding the Crown was closed.

In the beginning, Ethan was at the Secret Entrance. Ethan could hack. Frank was at the
Prison area. Frank was imprisoned. Frank knew about the Crown. The Guard was at the Vault
area. The Secret Entrance was an exit. The vault holding the Crown could be accessed from
a computer at the Switch Room. The Guard was holding the Prison Key. The Prison Key can
unlock the Prison area. The Crown was at the Vault area. The vault holding the Crown was
closed. Ethan wanted Frank not to be imprisoned. Frank wanted Ethan to know about the
Crown. Ethan went from the Secret Entrance to the Vault area. The Guard got distracted by
the computer. Ethan stole the Prison Key from the Guard. Ethan went from the Vault area to
the Prison area. Ethan unlocked the Prison area with the Prison Key and freed Frank. Frank
told Ethan about the Crown.

Ethan went from the Prison area to the Switch Room. Ethan hacked open the vault storing the
Crown. The Guard went from the Vault area to the Switch Room. Ethan went from the Switch
Room to the Vault area. Ethan stole the Crown from the Vault area. The alarm siren was set off.
Ethan went from the Vault area to the Secret Entrance. Ethan escaped the building. Frank went
from the Prison area to the Secret Entrance. Frank escaped the building. The Guard closed the
vault storing the Crown. The End.

al. (1991), and (c) we demonstrate that different mappings can capture different aspects of human
question answering. Our work here thus helps advance a research agenda that uses cognitive states
as the target of computationally generated narratives.

While a discussion of QUEST’s relationship to other cognitive models of narrative compre-
hension is beyond the scope of this paper,2 we restate the elements of QUEST that are critical for
discussion in Section 2. We present the mappings of planning structures to QKSs in Section 3.
Because our work covers mappings using the same kind of knowledge representation, our discussion
is in the style of a chronological successive refinement. We begin by presenting the narrative plan
representation in Section 3.1. We continue in Section 3.2 by discussing both (a) the first technique
for mapping a narrative plan to a QKS by Christian and Young (2004), and (b) the results from an
empirical validation of their technique. The second technique, developed by Riedl (2004), depends
upon an expanded knowledge representation, which is discussed in Section 3.3. We conclude the
review in Section 3.4 by discussing (a) a second technique developed for mapping Riedl’s narrative
plan to a QKS and (b) the results Riedl obtained from an empirical validation of his technique. In
Section 3.5 we present a novel approach that takes Riedl’s expanded representation and computes a
different QKS. In Section 4, we present an empirical evaluation for each of the three QKSs. Finally,
in Section 5 we discuss how our work advances research on comprehension-driven computational
models of narrative generation, as well as limitations of this work and directions for future work.

2. For comprehensive reviews, see Graesser et al. (1997) and McNamara and Magliano (2009).
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Table 2. Types of nodes within QUEST knowledge structure graphs covered in this work.

Node Type Description Example

State Describes a state assumed true until explicitly changed. (Ethan has the jail key)
Goal Describes a state or event desired by an agent. (Ethan wants to free Frank)
Event Describes an intended or unintended state change. (Ethan pickpockets the Guard)

2. QUEST: A Cognitive Model of Question-Answering

As described by Graesser and Franklin (1990), QUEST is a cognitive model of question answering.
More broadly, it is a computational-cognitive model (Sun, 2008), since it imputes a computational
representation and procedure to the mental processes involved in the comprehension of narrative.
Their system assumes that semantic content exists in the mind of a person as an information
source, called a QUEST knowledge structure (QKS), which is manipulated symbolically to return
answers to specific queries. The model also assumes, as we do, that a person’s mental model of the
situations in a story are propositional in nature (Johnson-Laird, 1983). Comprehension in QUEST

is operationalized via an experimental question-answering paradigm: Their aim was to describe the
narrative comprehension process by accounting for how human adults normatively answer certain
classes of open-ended questions in story contexts. The question categories that QUEST can reason
about are Why?, How?, When?, What enabled X?, and What are the consequences of X? questions.
We also refer to the last two types as enable and consequence questions, respectively.

Table 3. Types of connecting arcs within QUEST knowledge structures covered in this work. Arcs go between
types of nodes, where G denotes a goal node, and NG denotes a non-goal node.

Arc Type Description Example

Consequence
{NG} C−→ {NG}, where the source node causes or
enables the sink node.

(Ethan pick-pockets the Guard)
C−→ (Ethan has jail key)

Reason
{G} R−→ {G}, where the sink node is a reason, motive,
or super-ordinate node of the source node.

(Ethan wants to pick-pocket the Guard)
R−→ (Ethan wants to free Frank)

Outcome
{G} O−→ {NG}, where the sink node specifies whether
or not the source node is achieved.

(Ethan wants to pick-pocket the Guard)
O−→ (Ethan pick-pockets the Guard)

Initiate {NG} I−→ {G}, where the source node initiates or
triggers the sink node.

(Ethan hacks open the vault)
I−→ (The Guard wants the vault to be closed)

[not depicted in Figure 1]

QUEST is used to predict the goodness of each answer to a given question. Questions and
answers are drawn from nodes in the QKS; a pair of nodes form a question-answer pair, with a
designated question node and answer node. One can form these pairs can be formed from arbitrary
pairs of nodes, but not all answers will serve as good – or even correct – answers to the questions. For

230



QUESTION ANSWERING IN THE CONTEXT OF STORIES GENERATED BY COMPUTERS

Figure 1. A QUEST Knowledge Structure for the first half of The Crown Heist Story.

each pair of nodes, QUEST predicts a goodness-of-answer (GOA) judgment, with answers labeled
as bad, possibly acceptable, moderately good, or very good.

To facilitate the subsequent discussion of QKSs, we use a narrative called The Crown Heist
Story. This story was constructed automatically and rendered as a film sequence (discussed in
Section 4) for our experiment. Table 1 presents this story, realized as text,3 to serve as a working
example. A QKS is computationally represented as a directed graph of statement nodes. Figure 1
shows a QKS for the first half of The Crown Heist Story, from its beginning until the moment Ethan
frees Frank, who is imprisoned at the start.

Statement nodes within a QKS contain either a simple sentence (e.g., as 〈subject, verb, simple-
predicate〉), or a combination of such sentences (e.g., “x saw φ” where φ is of the form 〈subject, verb,
simple-predicate〉). Both the statement nodes and their connecting arcs are typed based on their
meaning and purpose. The three techniques we present to map planning structures to QKSs do
not cover all types of QKS nodes and arcs. Tables 2 and 3 specify the nodes and arcs we cover,
respectively, but Graesser and Franklin (1990) and Graesser et al. (1991) discuss the full range of
structures.

2.1 Question Answering in QUEST

The QUEST answering procedure predicts the semantic and conceptual content of answers to ques-
tions given these inputs: an information source (i.e., a QUEST knowledge structure), a question
category, and a question focus. Given a query, the procedure first determines the query’s question

3. This text was realized via a straightforward automated mapping of data structures to sentences. Since we are not
making claims about this realization, we will not discuss this mapping here.
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category, and then its corresponding question focus. For example, for the QKS in Figure 1, we
can ask the question: “Why did Ethan pickpocket the Guard?” In this instance, the information
source is the QKS itself, the question category Why, and because this is a query over an intentional
action, the question focus is the pair of nodes labeled “Ethan pickpockets the Guard” and “Ethan
wants to pick-pocket the Guard.” The procedure then searches the QKS according to the QUEST

convergence mechanisms, narrowing the node space to a set of nodes that could serve as good
answers to the question. QUEST incorporates three convergence mechanisms, but one (constraint
satisfaction) dealt with answers that referenced story content consistent with the portrayed story
world, but never explicitly shown in the narrative.4 Since we do not account for such non-explicit
story material we restrict our attention to the two remaining convergence mechanisms:

1) The arc-search procedure, which traverses the QKS starting from the question focus node and
identifies candidate answer nodes to the query based on the question’s type. There are unique arc-
search procedures for each kind of question (Graesser & Franklin, 1990), but in all cases it first
identifies which arcs are traversable and in what directions. For example, for Why questions, the
procedure searches the QKS for both superordinate nodes, which are reachable from the question
focus node through Reason arcs, and goal initiators, which connect to the question focus node
or the superordinate nodes through Initiate arcs. In other words, according to the QUEST model,
a good response for a Why question is either a goal or superordinate goal to which the question is
tied, or an event that prompted the goal, or superordinate goal, in the first place. For the question
“Why did the Ethan pickpocket the Guard?” one searches with these criteria from the question
focus nodes “Ethan pickpockets the Guard,” and “Ethan wants to pickpocket the Guard.” Since
no Initiate arcs appear in Figure 1, one can never find goal-initiator nodes. From the node
“Ethan pickpockets the Guard,” one can get to no other nodes through Reason arcs. However,
from “Ethan wants to pickpocket the Guard,” we can reach the nodes “Ethan wants to open jail
from hall”, “Ethan wants to go to jail”, and “Ethan wants to free Frank” through Reason arcs.
Thus, these are candidate answers for the question: “Why did the Ethan pickpocket the Guard?”

2) The structural distance metric, which measures the number of arcs between the question focus
node and the node that serves as the answer to the question. For the three legal answers found
by the arc-search procedure, the respective structural distances are 1, 2, and 3. For nodes not
identified by the arc-search procedure (i.e., illegal answer nodes), the distance is the shortest
path from the question focus to the node via any arc. In general, structural distance correlates
negatively with the goodness of an answer to a question (Graesser et al., 1991).

The arc-search and structural distance metric are combined to identify good answers to questions
as defined by the QUEST model; Graesser and colleagues demonstrated that QUEST’s judgments
correspond to those of human raters via the experiment described in the next section.

4. As a person consumes a story, they will make inferences over actions and states of the world that are not explicitly
narrated, but are necessitated to make the narrative coherent, and are enabled by the events that are explicitly
narrated (Myers et al., 1987). In the original QUEST studies, these inferences were collected as more data for
manually expanding a hand-authored QUEST knowledge structure, which is what we aim to produce automatically.
Graesser et al. (1991) augmented the QKS with this inferred narrative information with the understanding that the
constraint satisfaction convergence mechanism would identify these inferred nodes during the process of computing
an answer to a question.
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2.2 QUEST Evaluation Procedure

A full review of all the experiments conducted to validate the QUEST model is beyond the scope of
this paper. Instead, we focus on the evaluation with the context closest to ours: answering questions
about stories (Graesser & Murachver, 1985; Graesser et al., 1991). Since we have replicated the
QUEST evaluation experiment, we defer full discussion of the procedure to Section 4, where we
present our experimental design. Here we present only a broad overview of the evaluation procedure
and recap the main findings relevant to our work. This procedure consisted of two phases. In Phase
I, Graesser and Murachver (1985) generated question-answer pairs for the two stories they used
across the studies. For each statement node that explicitly appeared in the story text, they generated
questions from every question category and then compiled an answer distribution for each question-
answer pair. In Phase II, Graesser et al. (1991) generated unique question-answer pairs for each
question, using a pool of answers that included that question’s answer set (compiled in Phase
I), and those from neighboring statement nodes in the QKS. They asked subjects to provide, for
each question-answer pair, either a binary goodness-of-answer (GOA) judgment (it is a good/bad
answer to the question), or a 4-point Likert (2009) GOA judgment (it is a bad/possibly accept-
able/moderately good/very good answer to the question). The authors measured the individual
impact of QUEST’s three convergence mechanisms on GOA ratings for all question types. We
will not discuss all the hypotheses and results of these studies, but the critical findings for our
work include the relationship between the convergence mechanisms and GOA ratings for question
types. Specifically, for all question categories (Why, How, Enable, When, and Consequence), if the
question-answer pair passed the arc-search procedure, the model predicted a good answer. Similarly,
if the question-answer pair failed the arc-search procedure, it predicted a bad answer. In addition,
for Why, How, and Enable questions, structural distance was a significant predictor of GOA only
when the question-answer pair failed the arc-search procedure.

3. Mapping Plan Structures to Quest Knowledge Structures

Prior work (Christian & Young, 2004; Riedl, 2004) has demonstrated a correspondence between
partial-order causal link planning structures (Weld, 1994) and QUEST knowledge structures. That
body of work sought to demonstrate that partial-order causal link (POCL) plans, which can ade-
quately characterize key structural properties of narratives (Young, 1999), could additionally serve
– through an appropriate mapping – as plausible models of a narrative consumer’s understanding
of a narrative. The mapping takes as input a POCL-like plan, and outputs the corresponding
QKS structure meant to represent a human’s mental structures after successful comprehension of a
narrative. A mapping is evaluated based on how well the output QKS adequately predicts behavioral
responses in the experiment used to validate the QUEST model itself (discussed in Section 4). In this
paper, we summarize and expand on prior work in this area by introducing a mapping that refines
prior efforts and by running an experiment to evaluate the mapping techniques. The three methods
are similar in nature, and we provide them collectively in Table 4 to facilitate comparison. The three
methods each use POCL plan structures, but both the mapping by Riedl (2004) and our mapping
operate over an expanded POCL knowledge representation, called IPOCL, discussed in Section 3.3.
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Because POCL is a subset of IPOCL, Table 4 shows them all as taking an IPOCL plan as input. We
defer the presentation of the method to introduce the relevant data structures.

3.1 Partial-Order Causal Link Planning

A POCL planner finds a sequence of steps that transform some initial state of the world to some
goal state of the world. A world state is conjunction of logical function-free ground literals that
describe what is true and false in a story world. States are either established by the execution of a
step or are true in the initial state. Steps are instantiated from templates called operators. Formally:

Definition 1 (Step) A step is a tuple 〈T, P,E, L〉 where T is the type of the instantiated operator
(e.g., PICK-UP); P is a set of preconditions, literals which must be true before the step can execute;
E is a set of effects, literals made true by the step’s execution; and L is a label which distinguishes
this step from other instances of the T operator.

The set of all available operators (which when instantiated become steps) is called the planning
domain. For generality, P and E can have variable terms to convey ideas such as “creature x steals
item y”. The assignment of a value to a literal with variables is recorded in a binding:

Definition 2 (Binding) A binding is a tuple (X,Y,D), where X is a variable term of a step in a
partial plan; Y is either a variable term or a constant term in the quantification domain of X;
and D is the designation relation between X and Y , and is either the codesignation relation (i.e.,
X = Y ) or the non-codesignation relation (X 6= Y ).

Plan steps are partially ordered with respect to time (Penberthy & Weld, 1992):

Definition 3 (Ordering) An ordering is a tuple 〈s, u〉 where s and u are steps. The ordering
specifies the relative order of the tuple’s steps. We denote an ordering over two steps as s ≺ u,
where s must be executed before u.

The POCL-planning process is one of least-commitment iterative refinement; in each iteration, the
process records the step it has chosen to satisfy a condition in the plan and the reason for choosing
that step. To record this dependency, it uses a data structure that encodes causal relations. Formally:

Definition 4 (Causal Link) A causal link is denoted s
p−→ u, where step s has an effect p and p is a

precondition of step u. A causal link s
p−→ u implies the ordering s ≺ u. Step u’s causal parents are

all steps s such that there exists a causal link s
p−→ u. A step’s causal ancestors are the steps in the

transitive closure of the parent relation.

A POCL planning problem is defined by the initial state specification, goal state specification, and
the planning domain. The solution to a POCL planning problem is a plan:

Definition 5 (Plan) A plan is a tuple 〈S,B,≺, L〉 where S is a set of steps; B a set of variable
bindings; ≺ a set of orderings; and L a set of causal links. A complete plan is guaranteed to
achieve the goal from the initial state. A plan is complete if and only if:
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• For every precondition p of every step u ∈ S, there exists a causal link s
p−→ u ∈ L (i.e., every

precondition of every step is satisfied).
• For every causal link s

p−→ u ∈ L, there is no step t ∈ S which has effect ¬p such that
s ≺ t ≺ u is a valid ordering according to the constraints in ≺. In other words, it is not
possible that a causal link can be made undone before it is needed.

3.2 Christian and Young’s (2004) Mapping

Christian and Young (2004) developed a technique to convert the POCL plan representation to
a QKS representation. The mapping of POCL plans to QKSs is not straightforward due to the
expressivity of the QKS and the relative precision of POCL plans. Nevertheless, one can map a
standard POCL plan structure into a simple yet functional QKS; the generated QKS is limited to
containing only Outcome, Consequence, and Reason arcs, and it only describes the actions of a
single character. Their technique in Table 4 maps steps to Event and Goal node pairs and effects to
State nodes. Event nodes are linked to their effect States by Consequence arcs, and Causal links are
translated into Reason and Outcome arcs between steps’ Event and Goal nodes.5

Christian and Young evaluated their mapping using a cinematic narrative in a game-based virtual
environment (i.e., a film made in a video game) created to convey the plot of a narrative POCL plan.
The plan was converted into a QKS to predict viewers’ understanding of the cinematic. The authors
followed an experimental procedure modified from that used by Graesser et al. (1991): 15 subjects
were familiarized with the game interface and actions inside the game world, viewed the cinematic,
and later rated Why, How, and What enabled question-answer pairs for their goodness of answer
(GOA). The arc-search and structural distance predictor variables were calculated for each question-
answer pair using the QKS generated from the POCL plan and constraint satisfaction was calculated
by a novel method rather than the experts that Graesser et al. used. Christian and Young found arc-
search and constraint satisfaction to be significant predictors of GOA rating for all question types
and structural distance to be significant for What enabled questions.

3.3 Intentional Partial-Order Causal Link Planning

Riedl (2004) expanded the base POCL representation to generate story plans that explicitly reason
about the apparent believability of characters. He demonstrated that audiences find characters in
stories more believable when they execute steps directly in service of goals that they adopt during
the development of a narrative arc. To that end, Riedl and Young (2010) defined a data structure on
top of the base POCL representation that reified character intentions:

Definition 6 (Frame of Commitment) A frame of commitment is a tuple 〈S′, P, a, ga, sf 〉 where
S′ is a subset of steps in some plan P , a is a character, ga is some goal of character a, and sf is
a final step which has effect ga. The steps in S′ are all the steps that character a takes in order to
achieve goal ga. All steps in S′ must be causal ancestors of sf , and all steps in S′ must be ordered
before sf .

5. The original mapping contains an extra step for creating Goal nodes corresponding to the authorial goals in the
planning problem. However, we use these nodes to represent character goals only, not authorial goals.
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Table 4. The mapping method takes as input an IPOCL plan and output a QKS. Differences between
mappings are shown on different sides of the vertical lines.

METHOD: IPOCL−→QKS
INPUT: An IPOCL Plan (P := 〈S,B,≺, L, I〉)
OUTPUT: A QUEST Knowledge Structure

1. Create a total ordering for the steps in P that is consistent with the ordering constraints ≺.
2. For each plan step si ∈ S:

2.1 Create an Event node, εi.

(Ours) Christian and Young (2004); Riedl (2004)
2.2 ∀ Frames of Commitment (cj := 〈S′, P, a, ga, sf 〉)

∈ I , where si ∈ S′:

2.2.1 Create a Goal node γij .

2.2.2 Connect γij
O−→ εi.

2.2 Create a Goal node, γi.

2.2.1 Connect γi
O−→ εi.

2.3 ∀ effects e of si:
2.3.1 Create a State node σe.

2.3.2 Connect εi
C−→ σe.

3. For each causal link sj
p−→ sk ∈ L:

3.1 Create a State node σp for the effect p.
3.2 Create an Event node εk and Goal node γk for the step sk.
3.3 Create a Goal node γj for the step sj .

(Ours) Christian and Young (2004); Riedl (2004)

3.4 If ∃ Frame of Commitment (c := 〈S′, P, a, ga, sf 〉)
∈ I , where sj , sk ∈ S′, or if sk is unmotivated,

Connect σp
C−→ εk.

3.4 Connect σp
C−→ εk.

Ours; Riedl (2004) Christian and Young (2004)

3.5 If ∃ Frame of Commitment (c := 〈S′, P, a, ga, sf 〉)
∈ I , where sj , sk ∈ S′,

Connect γj
R−→ γk.

3.5 Connect γj
R−→ γk.

4. ∀ Frames of Commitment (c := 〈S′, P, a, ga, sf 〉) ∈ I , where c is motivated by step sm, let εm be the
Event node that represents sm and γf be the Goal node that represents sf in the QKS.

Connect εm
I−→ γf .

A character, or actor, resolves to accomplish those goals that they intend. The set of all characters
is denoted by A.

236



QUESTION ANSWERING IN THE CONTEXT OF STORIES GENERATED BY COMPUTERS

Definition 7 (Intention) An intention is a modal predicate of the form intends(a, ga) where a is
an actor and ga is a literal that actor a is committed to make true. A motivating step is a step which
causes an actor to adopt a goal and that has an intention as one of its effects. A final step is a step
that achieves some actor goal by having ga as one of its effects.

Steps that causally link a motivating and final step make up a frame of commitment. Given these
new elements, we introduce a new data structure that builds on Definition 5:

Definition 8 (IPOCL Plan) An IPOCL plan is a tuple 〈S,B,≺, L, I〉 where S, B, ≺, L are as
defined in Definition 5. I is a set of frames of commitment. An IPOCL plan is complete if and only
if it is a complete POCL plan, and for every step s ∈ S, and every character c ∈ A, there exists a
frame of commitment f = 〈S′, P, a, ga, sf 〉, such that s ∈ S′, and c = a.

3.4 Riedl’s (2004) Mapping

Riedl updated Christian and Young’s mapping technique to work with IPOCL plan structures.
The new mapping shown in Table 4 takes advantage of the fact that IPOCL plans incorporate a
representation of character goals, motivations for these goals, and actions taken in their service.
Reason arcs are therefore only drawn between Goal nodes that share a Frame of Commitment, and
Initiates arcs are drawn between a Frame of Commitment’s motivating step and its top-level goal.6

Riedl followed a similar protocol to Christian and Young (2004), but focused solely on Why
questions, hypothesizing that these questions would better explained by a notion of intention. Ad-
ditionally, he used generated text, rather than a film sequence, to communicate the narrative of his
plan, and he used only the arc-search predictor variable. Riedl’s primary hypothesis was that the
use of IPOCL as an underlying plan structure would increase the QKS’ predictive power, so he
compared the results of two QKSs, one generated using a POCL plan structure of the story and
another that used an IPOCL plan structure. The arc-search procedure for both QKSs accurately
predicted GOA rating, reaffirming Christian and Young’s hypothesis. The study also demonstrated
that using IPOCL significantly improved the predictive power of the QKS for Why questions.

3.5 A New Mapping

As shown above, the plan representation and the mapping technique used when creating a QKS from
a POCL plan can have an important effect on the resulting structure and its ability to predict GOA. To
explore the ways that decisions in the mapping procedure can affect the resulting QKS, we created
a third mapping based on Riedl’s, but which has a stricter criterion for the use of Consequence arcs,
as shown in Table 4. In a QKS, a Consequence arc between two statement nodes, A and B, indicates
that “A causes or enables B” (Graesser et al., 1991) and, in previous mappings, each causal link in
a POCL plan is mapped to a Consequence arc. However, in the QKSs constructed by Graesser et
al., Consequence arcs pointing to intentional actions always originated from within an agent’s local
goal hierarchy. This comprises the nodes that make up an agent’s plan, including superordinate and

6. Riedl’s original mapping omits State nodes, but we have retained them for consistency. For simplicity, we have also
omitted a step of his method that deals with delegation of goals from one character to another, which we do not
address in this work. For the complete method, see Riedl (2004).
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Figure 2. Stacked histograms for each mapping, showing for each GOA rating the number of QA pairs that
passed the arc-search (in white) and failed the arc-search (in black) out of a random sample of 50 pairs.

subordinate goals and actions, reflecting the intuition that intentional actions are the consequences
of an agent’s plan. Causal links, however, often connect plan steps that are part of different frames of
commitment and thus different goal hierarchies. Our mapping ignores these causal links, producing
a QKS that resembles those created by Graesser et al. (1991). Additionally, our mapping does not
create Goal nodes for unintentional actions, as these actions are not in service of a goal.

To understand the motivation for these changes, consider two steps from our example story:
a) Ethan goes to the prison to free Frank and b) Ethan goes from the prison to the switch room to
unlock the vault holding the Crown. In the POCL plan, there is a causal link between these two
steps because going from the prison to the switch room requires Ethan to be at the prison. However,
these two actions are part of two separate goal hierarchies (remember that Ethan did not learn of the
Crown’s existence until after freeing Frank). If we were to ask a question such as “Why did Ethan
go to the switch room?” the set of appropriate answers should not include Ethan going to the prison
to free Frank. But, if we connect these two actions with a Consequence arc, as in previous mappings
(line 3.4 in Table 4), the arc-search will include Step 1, and transitively any of its causal antecedents,
as appropriate answers, which our mapping does not. We hypothesize that this modified mapping
will improve the resulting QKS’s arc-search procedure for Why questions like this one.

4. Experiment

Graesser and colleagues (1985; 1990; 1991) generated the QUEST Knowledge Structures meant to
encode a person’s comprehension of a story manually using expert knowledge and evaluated how
well they predicted behavioral results. We tested whether story plans generated by a computational
process (i.e., an automated story planning system) could be automatically transformed into a QKS of
comparable predictive power by replicating the two-phase experimental design outlined by Graesser
et al. (1991). As described in Section 2.2, in the experiment we presented participants with question-
answer node pairs (QA-pairs) from the QKS and asked them to give goodness-of-answer (GOA)
ratings for for each pair. Similarly, for each QA-pair, we used the QKS to generate arc-search and
structural distance predictor variables, as described in Section 2.1. We examined two hypotheses:

H1 A QKS generated automatically from a plan structure can be used to predict participants’
comprehension of a narrative generated from that plan. Specifically:
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Figure 3. Stacked histograms for each mapping, showing for each GOA rating the distribution of QA pairs’
structural distance, from closest (in black) to farthest (in white) for a random sample of 50 pairs.

a) The arc-search variable will have a linear relationship with participants’ GOA ratings;
b) The structural distance variable will have an inverse linear relationship with participants’

GOA ratings.
H2 Motivated changes to the mapping technique will produce improvements in the ability of the

resulting QKS to predict GOA. Specifically:
a) Riedl’s (2004) mapping will produce a higher quality model for Why questions than

Christian and Young’s (2004) mapping;
b) Our new mapping will produce a higher quality model for Why questions than Riedl’s

(2004) mapping.
To evaluate these hypotheses, we generated a narrative plan and a video7 depicting the plan that we
showed to subjects. We used the narrative plan to generate three different QKSs, one for each of
the mapping techniques outlined in Table 4. We also developed an interactive demo to help each
participant become acquainted with the logic of the world. All 40 participants completed the demo
before beginning the experiment. After this they watched the narrative plan and answered questions
about each event in the story. If possible, we tagged these answers to nodes in the QKS. As a result,
each question-type (e.g., Enabled, How, Why) about each event in the story was linked to a set
of possible answers. Using a procedure outlined in Graesser et al. (1991) in which some random
nodes are also selected as possible answers, we created 912 QA-pairs consisting of a question and
an answer. Later, a new set of 40 subjects watched the same film and judged the question-answer
pairs. Each subject judged 200 QA pairs and furnished GOA ratings for a single QA pair via a
4-point Likert-type scale: (1) bad answer, (2) possibly an acceptable answer, (3) moderately good
answer, or (4) very good answer.

4.1 Results

We collected 7552 GOA ratings for 780 unique QA pairs, averaging 9.7 ratings per pair. We
converted these ratings to a numeric representation (1-4) but we treated them as ordinal data.
Because we needed a single GOA rating for each QA pair, we took the mode of the ratings collected
on a given QA pair as the representative rating for the pair. If a pair had ratings for which there

7. https://youtu.be/Xy_4k4uuTrc
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Table 5. Results of the multiple ordered logistic regression on all data. S indicates significance at p < 0.05
and SC indicates significance at p < 0.0033, a corrected significance threshold for multiple (15) tests.

Mapping Variable Why How What enabled Consequence All

Christian and Young (2004)
Arc-Search (arc) 1.94sc 2.00sc 1.38sc 1.52sc 1.51sc

Distance (dis) −0.268s −0.136 −0.194 −0.233s −0.222sc

Riedl (2004)
Arc-Search (arc) 2.13sc 1.67sc 1.33sc 1.61sc 1.60sc

Distance (dis) −0.419sc −0.137 −0.232s −0.302sc −0.268sc

Ours
Arc-Search (arc) 2.29sc 1.14s 1.53sc 1.82sc 1.75sc

Distance (dis) −0.086 −0.014 −0.001 −0.184sc −0.068s

was no clear mode, we discarded it. We thus had 695 unique (QA pair, GOA rating) pairs. For each
rating, we calculated the arc-search and structural distance variables for each of the QKSs generated
by the three mappings discussed in Section 4.

Figures 2 and 3 show the relationship between the arc-search and structural distance predictor
variables and the GOA ratings given by subjects. For clarity, the figures are based on a subset of the
data, randomly sampled such that each (1-4) GOA rating was evenly represented with 50 samples, to
compensate for an overrepresentation of low ratings in the data, although we performed all analyses
on the entire data. Figure 2 highlights a trend that questions passing the arc-search are more likely
to be rated highly by participants. Figure 3 shows a negative correlation between structural distance
and GOA rating. The distribution of structural distance for low-rated GOA-pairs favors high values
(lighter colors), while the distribution for high-rated pairs favors low values (darker colors).

4.2 Analysis

To evaluate hypothesis H1, we used a procedure based on previous work (Graesser et al., 1991;
Christian & Young, 2004; Riedl, 2004). We carried out a multiple ordered logistic regression
over the GOA ratings, with the arc-search (arc) and structural distance (dis) QUEST convergence
mechanisms as independent variables:

GOA = β0 + β1(arc) + β2(dis) + ε (1)

We stratified the 695 (QA pair, GOA rating) pairs on question type and used the same regression
analysis for each question type. We used this stratification in order to isolate the effects of the
QUEST convergence mechanisms on individual question categories. Table 5 outlines the results.

Analysis suggests that the arc-search variable is a significant predictor of GOA ratings for all
mappings overall and nearly all question types. Structural distance is also generally significant
across mappings, though less so both statistically and practically. It appears structural distance is
only a significant predictor across question types for Riedl’s (2004) mapping. This supports H1,
as well as the hypotheses of Christian and Young (2004) and Riedl (2004), that a plan structure
can produce a viable QKS which predicts the GOA ratings of questions-answer pairs pertaining to
events of that plan. This serves to further support the choice of a POCL plan structure for narrative
analysis and generation.
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Table 6. AIC values for the multiple regressions in Table 5. For each column, a lower value indicates a better
model for that question type. The last column indicates the overall model fit. Bold values are the lowest for
a question type.

Mapping Why How What enabled Consequence All

Christian and Young (2004) 359.55 274.75 321.56 349.91 1303.84
Riedl (2004) 334.13 280.89 318.37 338.18 1269.61

Ours 341.66 298.72 331.52 330.09 1302.43

To evaluate hypothesis H2, we compared the regression models produced by the three mappings
discussed in Section 3. For each model, we computed the Akaike information criterion (AIC), a
relative measure of model quality. Although AIC cannot determine the quality of the model in an
absolute sense, we claim that all models adequately describe the data given the significant results in
Table 5. Given a collection of models for a dataset, AIC estimates the quality of each model relative
to each of the other models, and thus provides a metric for model selection (Burnham & Anderson,
2002). Table 6 shows the results.

Given the three candidate models, the best mapping, given by the minimum AIC, is Riedl’s
(2004). These results support H2a, along with Riedl’s original hypothesis, that an IPOCL mapping
generates a QKS that serves as a better predictor of Why questions’ GOA ratings than one generated
by Christian and Young’s (2004) original mapping. Further, it seems this conclusion generalizes
across most question types. To verify this, we compared the statistical model of Christian and
Young’s mapping to that of Riedl’s mapping. We calculating the relative probability that the former
model minimizes the information lost when using it to represent the underlying cognitive process
that generated the collected data:

exp

(
AIC (Riedl, 2004) −AIC (Christian and Young, 2004)

2

)
(2)

The above equation shows that, given our data and regression model, Christian and Young’s
mapping is 3.03 ∗ 10−6 times as likely (relative to Riedl’s) to minimize information loss for Why
questions, and 3.69 ∗ 10−8 times as likely to minimize information loss over all question types.
Since the relative probabilities are so low, we can safely omit Christian and Young’s model for
future consideration on Why questions.

To evaluate H2b, we compared our mapping and that of Riedl (2004), which revealed our
mapping as seemingly inferior. The reason is clear in Table 5, as the structural distance predictor
variable fails to achieve significance for most question types. We hypothesize this is largely due
to the fact that the QKS generated by our mapping is a disconnected graph, so structural distance
values could not be computed for many of the QA pairs and were omitted, treated as a 0 in the
regressions.8

8. We chose the value zero to represent the distance between two nodes that are unreachable from each other so as not
to impact the regression. We also ran the analysis with infinity (or a very large number for use in regression), and this
did not result in the structural distance variable reaching statistical significance.
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Table 7. AIC values for models including only arc-search.

Mapping Why How What enabled Consequence All

Riedl (2004) 353.35 280.64 322.47 346.12 1300.05
Ours 342.97 296.79 329.52 339.38 1307.47

Because we created our mapping the arc-search procedure in mind, we created a second set of
regression models using only the arc-search predictor variable by dropping the β2(dis) term from
Equation 1. The AIC values for these models appear in Table 7, although we have omitted the
models themselves.

In this case, our mapping produces a model with minimum AIC for Why questions. Using
Equation 2, we find that the model constructed from Riedl’s (2004) mapping is 5.58 ∗ 10−3 times
as likely to minimize information loss on Why questions, partially supporting H2b; the arc-search
procedure, not the structural distance metric, is improved for Why questions.

Although we have focused here on Why questions, our mapping differs on other question types
as well. The arc-search variable for Consequence questions is improved, but the reverse holds for
How and Enabled questions. While a post hoc analysis is not conclusive, a closer inspection of the
mapping provides a plausible explanation. Recall from Section 3.5 that the new mapping assigns
Consequence arcs to intentional actions only from within an agent’s local goal hierarchy. This
works well for Why and Consequence questions, which deal more with intentionality, but less well
for Enable and How questions, which do not. In the example in Section 3.5, for instance, Ethan’s
going to the prison did enable him to later go to the switch room, even if it was not why he did
it. Unfortunately, the arc-search procedures for Why and Enable questions are almost identical,
and will yield many of the same nodes, even though these questions often evoke different answers
from readers. Without modifying the QUEST procedures, it is more reasonable to expect a trade-off
between question types than straightforward improvement.

5. Discussion and Conclusion

In this work we presented a family of methods that transform an automated planning data structure
into an empirically supported computational-cognitive model of narrative comprehension (i.e., the
QUEST cognitive model of question answering). Experimental analysis showed that all of the
mapping variations predicted the goodness-of-answer ratings to questions about the story. Broadly,
this supports the hypothesis that the underlying plan structures used to generate QUEST Knowledge
Structures (QKSs) are related to a story consumer’s comprehension, and that isomorphisms exist
between the generative model and the descriptive model. Our work also presents a general two-step
strategy for computational narratologists interested in evaluating narrative data structures that aim to
achieve some cognitive effect. First, one defines a mapping from the narrative structures to a QKS
and then one runs the experiment outlined in Section 4 to evaluate whether goodness-of-answer
ratings are predicted from the narrative structures.
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It is difficult to compare our results directly to those of prior experiments cited in this paper.
We cannot, for instance, compare our procedurally generated QKSs to the hand-authored ones
created by Graesser et al. (1991); we can only show that ours produce predictive models that achieve
significance. This is due in part to the confounding role that the story itself plays in our analysis.
Perhaps the strongest limitation of this work is the use of a single story, but our results are consistent
with previous work (Christian & Young, 2004; Riedl, 2004) that used different ones. Our analysis
cannot detect if the relative strengths and weaknesses of the different mapping methods would be
consistent if we compared their predictions for other stories. The nature of specific events in the
story may affect memory or inference processes in an idiosyncratic way. Therefore, future work that
compares mapping techniques would benefit from demonstrating that differences between models
are consistent across stories.

Two issues should also be considered when interpreting our results. First, there was an uneven
distribution of GOA ratings in our data, with 455 of 695 rated as 1 (i.e., bad). This may be due in
part to some participants’ confusion about repeated story events and unclear location boundaries.
Second, this work covers only a subset of the QUEST node and arc types, omitting Style nodes,
Manner and Implies arcs, and several others.

The goal of this work has been to show that planning data structures are an effective proxy
for a story consumer’s comprehension and to lay the groundwork for more precise models of
narrative comprehension and generation. We compared the mapping methods and found systematic
differences between the resulting QKSs with respect to how well they fit subject data for particular
question types. These results suggest that QUEST may benefit from further delineations in the node
and arc types. As discussed in Section 4.2, the arc-search and structural distance procedures may
make it difficult to achieve improvement for all question types. We believe that new predictor
variables based directly from plan structures will produce more robust predictions of GOA ratings.

In general, we believe it is valuable to predict question-answering behavior directly from for-
malisms like those used in narrative planning. Novel formalisms will require new predictions and
new arc-search procedures. For example, a recently developed plan-based model of conflict (Ware
et al., 2014) suggests new question-answer relationships, such as ones that depend on hypothetical
reasoning (e.g., What if φ had occurred?). Similarly, a model that makes claims about the availabil-
ity of events in memory, e.g., that calculates event salience during comprehension (Cardona-Rivera
et al., 2012), may predict answers to questions about what occurs next. Through works like these,
we can extend QUEST’s usefulness to the computational narrative community, as both an evaluation
tool and for the purpose of intelligent control of narrative generation.

The ultimate aim of our research is to leverage computationally precise descriptions of cognitive
states as the targets of narrative generation. By combining the narrative planning and QUEST

models, we lend strength to narrative planning in terms of its representational power and generative
capacity. Thus, an exciting area for future work is to use QKS during the generation process itself.
By knowing how plan structures will translate into cognitive effects, a system can choose structures
to achieve specific cognitive-related ends, enabling comprehension-driven computational models of
narrative generation as a search through a cognitive state space.
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