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Abstract

Narrative planning is the use of automated planning to con-
struct, communicate, and understand stories, a form of in-
formation to which human cognition and enaction is pre-
disposed. We review the narrative planning problem in a
manner suitable as an introduction to the area, survey differ-
ent plan-based methodologies and affordances for reasoning
about narrative, and discuss open challenges relevant to the
broader AI community.

The Role of Narrative
The field of artificial intelligence has grappled with mod-
eling story reasoning since its beginning (McCarthy 1990),
due in part because this ability is thought to underlie or in-
evitably result from human cognition (Winston 2011).

Research on narrative intelligence progresses along three
efforts that encompass a multitude of intertwined nat-
ural language, commonsense, and multi-agent reasoning
tasks: narrative construction, communication, and under-
standing (Mueller 2013). Common across these efforts is the
use of automated planning as a formal, rigorous, and com-
mon vocabulary for framing advances in the field. This is
because AI planning naturally reasons over concepts – e.g.,
agents, objects, states, events – central to plot structure and
its communication (Young 1999).

While not all narrative intelligence research focuses on
planning, it is predominantly plan-based or plan-like. Appli-
cations include efforts to model human cognition (Cardona-
Rivera et al. 2016), achieve human-level performance on
language processing tasks (Martin et al. 2018), demonstrate
independent creativity (Summerville et al. 2017), struc-
ture human-computer interaction (Porteous, Cavazza, and
Charles 2010), explain AI rationales (Riedl 2016), and play
adventure games (Hausknecht et al. 2020). Strikingly, AI
research that does not focus on narrative planning is re-
discovering the utility of data structures and algorithms that
form its basis. For example, neuro-symbolic systems that use
narrative representations outperform non-trivial baselines in
commonsense reasoning (Bosselut et al. 2019; Cohen 2020).

We thus feel the time is ripe to take stock of the state-
of-the-art in narrative planning. This research community
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has converged upon representational and reasoning com-
mitments necessary to account for story telling and under-
standing in people (Cardona-Rivera and Young 2019). These
commitments are important to survey for advancing AI to-
ward performing as robustly and flexibly as people do. At the
same time, this area is relevant where we already see use of
narratives, when having greater predictive control over their
effects would benefit society; e.g., in narratives for personal-
ized learning (Wang et al. 2017), rehabilitation therapy and
healthcare communication (Ozer et al. 2020), and intelli-
gence analysis (Lukin and Eum 2023). And while there is no
standard for specifying narrative planning problems (Hayton
et al. 2020; Shirvani and Ware 2020) there is a vibrant com-
munity of practice, whose advances and unsolved problems
bear relevance to the broader AI community.

One work in recent history has surveyed narrative plan-
ning (Young et al. 2013), but its contours are imprecise in
technical detail. In contrast, we survey the field in formal
depth that is sufficient to precisely describe common themes.
We structure our survey as a tour guided by the question:

How might a computer system tell a story?

The answer is deceptively trite: it depends. In unpacking
this answer, we illustrate why narrative planning is so vast.
Along the way, we use an extended case example to identify
where our community has converged and diverged. As we
discuss later, the points of convergence are centered on ele-
ments deemed necessary for a computer-generated story to
be perceived as a story by an audience. In turn, the points
of divergence concern what layers of narrative detail are
needed, what narrative effects are desirable, and what plan-
ning approaches are used for modeling.

As a consequence of our exploration, we will cut across
narrative planning systems that address the tasks of narrative
understanding, construction, and communication. Finally,
we briefly sketch promising open problems that might stim-
ulate the broader community’s pursuit of new directions.

Pre-rigorous Notions in an Example
Before introducing this area in technical depth, we first
present more-intuitive descriptions of key narrative con-
cepts. We introduce a running example that makes our moti-
vating question more specific: how might a computer system
tell a story like the one depicted in Figure 1?



Figure 1: Panels from Marvel’s Star Wars #39–#44, which depict Princess Leia, Han Solo, Chewbacca, and C-3P0 realizing
they are in the belly of a giant space worm. The crew originally piloted the Millennium Falcon into the beast, thinking it was
an asteroid cave where they could hide from the relentlessly-pursuing Empire. In this paper, we explore how an automated
planning system would be able to tell such a story.

The depicted excerpt is from Star Wars #39–#44 (Good-
win, Williamson, and Garzon 1977), a Marvel Comics adap-
tation of the film Star Wars Episode V: The Empire Strikes
Back (Kershner 1980). Despite its brevity, it is rich enough
to discuss narrative in two senses that narrative planning
models must contend with: as a communicative act and as
a designed artifact.

Narrative as a Communicative Act
Figure 1 reflects an implicit communicative choice: the
choice of narration—the narrative’s surface form realiza-
tion in a medium (Hühn and Sommer 2013). While we use
a comic, we could have used a film, book, or video game.

Audiences familiar with the comic’s source film may
note differences in content beyond narration; namely, in the
plot—the narrative’s virtual world (Rimmon-Kenan 2002).
The comic differs from the film in its events (causally and
purposively related changes in states-of-affairs). To wit,
there are differences in the dialogue of characters (anthro-
pomorphized intention-driven agents), and event locations
(spatial context).

Plot differences reflect why the choice of narration is
more than a matter of aesthetic taste: the medium constrains
what plot information can be narrated (Elliott 2004). Above,
the constraints are from the comic form; i.e., syntax and se-
mantics of visual language (Martens, Cardona-Rivera, and
Cohn 2020). This explains why the last panel contains dia-
logue to clarify the ship’s maneuver; dialogue absent from
the film because the maneuver itself can be shown. The in-
formation that is narrated is the discourse—a time-ordered,
intentionally-selected subset of the plot (Genette 1980).

Algorithmically telling a story akin to Figure 1 demands
formalizing plot, discourse, and narration. This is often not
practically feasible, which invites the choice of which layers
to model and which others to control for. The choice ulti-
mately depends on authorial intent (Pratt 1977)—the com-
municative goals (e.g., entertain, teach, inspire) to accom-
plish via the telling of the story. Above, the authors entertain
the audience by carefully preserving ambiguity to build sus-
pense until the last panel reveals a surprise: the crew’s “safe
haven” is in fact a deadly threat.

Narrative as a Designed Artifact
Telling a story is a design task (Simon 1996). Methods to ac-
complish design tasks are not strictly “right” or “wrong,” but
rather “better” or “worse” along qualitative dimensions that
the designer cares about. In storytelling, quality is assessed
relative to authorial intent. Thus, the quality of a story goes
beyond just what is told. An author may also care about how
it is told, why it is told, to whom, when, and where—all to
varying, use-inspired degrees and extents.

Consider that in Figure 1, Han Solo’s actions do not sim-
ply emerge from his rational deliberation as an agent in a
task environment. While his behavior may accomplish the
authorial goal of hiding from the Empire, it is irrational with
respect to leading the Millennium Falcon’s crew to overall
safety. Nonetheless, his actions are authorially planned for
precisely because of their discourse-level narrative quality:
they advance the plot in a deliberately suspenseful way.

Ultimately, a narrative is successful to the degree it ac-
complishes an author’s intent. While similar to the process
of anticipating a plan’s execution dynamics (as in robotic
task planning; e.g., Cashmore et al. 2019), it is further com-
plicated by the nature of storytelling: the domain of dis-
course is different when plans are narrated, as plan effects
are manifest in the mental states of the audience. Thus, a
narrative plan’s success is not directly observable and must
be empirically assessed. For our example, the comic would
succeed as a narrative artifact if it predictably elicits enter-
taining suspense in its audiences.

The Narrative Planning Challenge
The central challenge for developing narrative planning sys-
tems is two-fold. The first challenge is computationally
modeling both senses of narrative – as communicative act
and as designed artifact – in terms of structural features of
plans and their construction (search) processes. This could
mean modeling narratives in such a way that classical plan-
ners can produce them; e.g., via compilation (Haslum 2012;
Christensen, Nelson, and Cardona-Rivera 2020). More com-
monly, it means developing novel planners with expanded
knowledge representations and reasoning mechanisms. We
focus on this latter approach.



Importantly, the choice of modeling technique presumes
a researcher has identified a desired narrative quality—i.e.,
the authorial intent that should be achieved by the narra-
tive planner during its operation. This narrative quality de-
fines the second challenge: the empirical assessment of how
well a developed narrative planner predictably elicits (in an
audience) the phenomenon it purports to model. In other
words, the researcher must assess their system’s success by
answering the question: “to what degree does my narra-
tive planner accomplish the authorial intent I care about?”
The answer usually manifests as an experimental inquiry
to determine how well a resulting narrative plan, its con-
struction process, or both evokes the desired communica-
tive goal in an audience. For example, given a plan-based
representation of Figure 1, the SUSPENSER narrative plan-
ner (Cheong and Young 2014) predicts what discursive in-
formation would elicit suspense in an audience, as evidenced
by several human-subjects studies.

Introduction to Narrative Planning
Narrative planning frames a planning agent as a story direc-
tor. A story director must craft a narrative plan that repre-
sents a narrative: the product of a narration of a sequence of
events that constitutes a trajectory through states-of-affairs.
Like other planning agents, a story director crafts a plan by
searching over a graph constructed from a declarative de-
scription of a task environment. In our case, the description
is a narrative problem, isomorphic to a classical problem.

Revisiting Classical Problems We briefly review the clas-
sical problem representation that most narrative planners
rely on: STRIPS (Fikes and Nilsson 1971), where a problem
is a tuple P = ⟨L, I, A,G, fcost⟩. L is a set of atomic well-
formed formulae (wff) or their negations, composed from a
formal language of predicate P, constant C, and variable V
symbols (and no function symbols).1 I ⊆ L is an initial state
that obeys the closed-world assumption, G ⊆ L is a set of
goal conditions, and A is a set of actions.

A state is a set of literals. An action is a state-transition
represented by a triple a = ⟨PRE(a), ADD(a), DEL(a)⟩; re-
spectively the precondition, add, and delete lists, all subsets
of L. An action a is applicable in a state s if PRE(a) ⊆ s.
Applying it results in a state s′ = (s\DEL(a)) ∪ ADD(a)
and incurs a cost per the function fcost : A −→ R0+; unless
otherwise indicated, we assume fcost = 1.

The solution to P is a classical plan π = [a1, ..., am]. This
ordered sequence of actions ai ∈ A transforms the prob-
lem’s initial state I to a state sm that satisfies the goal; i.e.,
G ⊆ sm. Its cost is computed as c(π) =

∑
ai∈π fcost(ai).

The execution trace(π, I) = [I, a1, s1, ..., am, sm] of π from
I is an alternating sequence of states and actions, starting
with I , such that si results from applying ai to si−1.

Narrative Planning Problems and Solutions
A narrative (planning) problem is broadly defined using the
same ingredients: L, I , A, G, and fcost. However, unlike its

1Words in true-type font are predicates. When prepended
with ‘?’, they are variables. When TitleCase, they are constants.

classical counterpart, a narrative problem is a formal repre-
sentation of authorial intent (including the task environment
with which to achieve it). It thus encodes the communicative
goals that the researcher would like to accomplish via the
narrative planner. These goals are the ones the story director
must aim for during the construction of a narrative plan.

Critically, authorial intent encompasses more than just the
achievement of conditions specified within G. The planner
also tacitly encodes authorial intent via the maintenance of
conditions during plan construction demanded by the re-
searcher’s desired quality. The narrative plan construction
process is therefore key: it must guarantee that the solution π
exhibits the authorially-intended qualities when it (or some
morphism of it) is narrated to an audience.

For example, the authorial intent of the PROVANT plan-
ner (Porteous and Lindsay 2019) is the generation of nar-
rative that exhibits a Hollywood-style struggle between a
protagonist and antagonist. This is guaranteed by more than
just the statement of conditions to achieve in G: it is also
guaranteed by its plan construction process. During opera-
tion, PROVANT rules out portions of the search space that do
not conform to the canonical Hollywood form. To expand,
the comic in Figure 1 would not be an output reachable by
PROVANT, as it does not exhibit the desired authorial intent.

A consequence of what narrative problems mean is that
(by default) classical planners are insufficient for story-
telling.2 To illustrate, we reconsider Han’s apparent irra-
tionality: his actions are not what one might expect from (for
example) a cooperative multi-agent belief-desire-intention
(BDI) planning architecture (Rao and Georgeff 1995). In
fact, his actions might never be considered for inclusion in π
because they potentially thwart the intent of all other agents.
What we need instead is the ability to reason about how ele-
ments added to π achieve authorial intent, sometimes to the
apparent detriment of the characters within π.

The preceding considerations explain why classical no-
tions of plan quality (e.g., cost, length) are insufficient: the
anticipated audience’s reception must be a critical part of a
story director’s plan quality assessment. Han’s actions are
deliberately chosen because of their expected value to the
tellability of the resulting narrative (Bruner 1991).

Points of Divergence in Narrative Planning
As mentioned, researchers typically focus on dimensions of
narrative plan quality they care about. For instance, a great
deal of recent work has modeled agents who obtain mistaken
beliefs and act per them such that they fail. These failed
actions, like the disparities of belief used to prompt them,
can be used to create irony as in the SABRE planner (Shir-
vani, Ware, and Farrell 2017), support the illusion of the-
ory of mind as in the IMPRACTICAL planner (Teutenberg
and Porteous 2013), and build tension as in the HEADSPACE
planner (Sanghrajka, Young, and Thorne 2022). Of these,
HEADSPACE would be able to generate narratives like Fig-
ure 1: the crew’s mistaken beliefs are what lead them inside
the giant space worm to begin with.

2The storytelling limitations of classical planners are not simply
addressed by non-classical (e.g., conformant) approaches.



The choice of which phenomenon to model is the ma-
jor point of divergence in the narrative planning commu-
nity. Different researchers seek to model different narrative-
theoretic dimensions, each with unique rationales to justify
why a given dimension matters for narrative plan quality.
There is no consensus on which dimensions matter most. We
further contend: because storytelling is a design task, there
is no universal set of “most important” narrative-theoretic
dimensions in characterizing stories. Transitively, there is a
rich (potentially infinite) set of storytelling forms that re-
searchers may reason about via planning systems.

Reasoning about diverse narrative phenomena requires
adapting the narrative problem representation, planning pro-
cess, or – more commonly – both. In the cited examples,
the problem representation is expanded in different ways. In
HEADSPACE, the wff in L, I , and G are expanded to ad-
mit statements about positive and negative character beliefs,
and actions in A must specify belief-based PRE(a), ADD(a),
DEL(a) lists. This is like IMPRACTICAL, which further dis-
tinguishes conscious(?char) and at(?char,?location) in L
to reason about characters who witness others doing things
at given locations, and transitively, characters who can pre-
dict when others do so, to afford generating stories in which
characters deceive one another.

Points of Convergence in Narrative Planning
While the diverse motivations for modeling narratives as
plans has precluded a standard specification of narrative
problems, the narrative planning community has tacitly con-
verged on several “fundamental particles.” These include
characters, locations, and actions as distinguished plot con-
cepts. These concepts are distinguished because they are
privileged in human cognition as the basis for mental mod-
els—our mental simulation of possible worlds—and event
models—our mental simulation of sequences of events. Both
mental models and event models underlie our ability to make
sense of stories (Cardona-Rivera and Young 2019). We de-
scribe other key points of convergence below.

Several narrative planners distinguish outcome Go from
trajectory Gt goals within G. The former are akin to clas-
sical planning ones: desired outcomes for the story’s end.
The latter are similar to state-space landmarks (Hoffmann,
Porteous, and Sebastia 2004), plan-space islands (Hayes-
Roth and Hayes-Roth 1979), and search control knowl-
edge (Kvarnström and Doherty 2000). Whereas these offer
guidance to non-narrative planners, narrative problems ad-
mit trajectory goals to afford more-direct expression of au-
thorial intent over solution narrative plans (Riedl 2009).

Several narrative planners further partition A into
two narratological classes. Happenings Ah are actions
that can occur without reason, e.g., an accident. Non-
happenings, on the other hand, must be intended (Brat-
man 1987)—they are carried out by characters in ser-
vice of goals they have adopted, and are termed inten-
tional actions AI. A happening is isomorphic to a STRIPS-
style action, whereas an intentional action is a quadruple
a = ⟨PRE(a), ADD(a), DEL(a), CHA(a)⟩, where PRE(a),
ADD(a), and DEL(a) are as before and CHA(a) is a list of
terms in C that denote plot characters.

Another point of broad convergence is the role of a nar-
rative plan’s causal coherence, that each action that takes
place has its preconditions satisfied. This causal backbone
is critical for audiences to derive temporal sequences—
people cannot easily understand stories without a spatio-
temporal frame (Radvansky and Zacks 2014). A narrative
plan’s causal coherence contributes the tacitly-valued qual-
ity of comprehensibility, that the resulting narrative can be
understood by audiences. Several studies have demonstrated
that causally-coherent narrative plans rendered as textual or
filmic media can themselves be used to predict average hu-
man answers to comprehension questions about the plan’s
constituent actions (Christian and Young 2004; Cardona-
Rivera et al. 2016). For a given action ai ∈ π, we can pre-
dict people’s responses to the questions Why / How did ai
happen?, What enabled ai to happen?, and What was the
consequence of ai?

The last point of broad convergence concerns another
tacitly-valued dimension of narrative plan quality: believ-
ability, that the resulting narrative does not thwart the au-
dience’s willing suspension of disbelief or sense of being in
a fictional world (Holland 2003). Believability is what mo-
tivated partitioning A into Ah and AI in the first place. This
partition is needed because ceteris paribus a story director
will search to satisfy G, without regard to whether all ai ∈ π
are believable for characters to execute. For example, sup-
pose our narrative problem describes part of our comic, with
Leia and Han, aboard the Millennium Falcon. Further sup-
pose the author specifies Go = {(not (conscious(Han))}.
A plausible narrative plan π narrated via templated text is:

(1) Leia picks up a blaster. (2) Leia stuns Han.

This plan is causally coherent; i.e., the blaster must be
picked up in order to stun Han. However, is this plan believ-
able as a story? Perhaps, but nothing in π would structurally
justify that. Why Leia stuns Han is not clear. Arguably, we
need more context to understand how Leia’s actions are be-
lievable. In other words, the plan lacks motivational coher-
ence: the plan contains actions that do not appear to be moti-
vated by anything. The IPOCL planner was developed to ad-
dress this concern (Riedl and Young 2010), under the ratio-
nale that intentions are a distinguishing feature of anthropo-
morphic activity (Bates 1994; Dennett 1989) and that inten-
tions provide motive to act (Bratman 1987). IPOCL expanded
the wff in L, I , and G to admit statements about character
intentions. These afford the expression of character goals as
modal sentences of the form intends(c, gc), where c rep-
resents any term from C that denotes a plot character and
gc ∈ L represents a condition the character c intends to ac-
complish. These intentions constrain the search space of the
story director: an action a ∈ AI can only be considered for
expanding the search space if it is possible to make a part
of a character c’s sub-plan πgc ⊆ π that accomplishes gc.
Today, narrative planners largely take intentional actions as
a given,3 as we do for the remainder of this paper.

3State-of-the-art planners such as HEADSPACE, SABRE, and IM-
PRACTICAL all reason about character intentions as sub-parts of
their primary modeling purpose.



The Different Layers of Narrative
Fully modeling a narrative as we have defined would require
formalizing all layers we have discussed thus far: plot, dis-
course, and narration. This task is often not practically feasi-
ble, leading researchers to pragmatically choose which lay-
ers to model. Each layer re-casts the classical problem rep-
resentation to mean different narrative concepts. Below, we
review different framings and extract common themes.

Plot Planning
The bulk of the work in narrative planning has focused on
modeling plot, in which the narrative plan is meant to repre-
sent the plot structure: a sequence of actions taken by char-
acters in the story that evolve the virtual world from its ini-
tial configuration to an author-desired one. Here, the nar-
rative problem is similar to a multi-agent planning (MAP)
one (Brafman and Domshlak 2013; Belle et al. 2023). This
is because characters exhibit intention dynamics as they are
orchestrated by the story director toward achieving G. But
unlike MAP, it is plausible for characters to intentionally
conflict, under the rationale that this phenomenon features
prominently in global Western narratives (Herman, Man-
fred, and Ryan 2010). Whereas plans with resource or coor-
dination conflicts would be ruled out in MAP, they are made
possible by design in the GLAIVE planner (Ware and Young
2014): its search space allows the story director to find plans
where characters adopt intentions that are mutually exclu-
sive, relaxing the IPOCL requirement that a character c’s sub-
plan πgc necessarily achieve gc. In other words, characters
can take actions toward goals, but fail to accomplish them.

Plot-level plans ought to be sound with respect to the
story world domain and problem in which they take place.
But because these task environments are virtual, they can
themselves be modified to suit particular storytelling goals.
For instance, the INITIAL STATE REVISION (ISR) algo-
rithm (Riedl and Young 2005) partitions I into true, false,
and undetermined sentence sets whose combinations de-
termine the plot’s set of alternative possible worlds (Ryan
1991). While this is similar to I being an open-world state,
ISR shifts undetermined sentences into true or false as con-
venient to accomplish storytelling goals, which only makes
sense per the synthetic nature of the plot’s virtual world.

Because quality is assessed with respect to an audience,
plot plans must be narrated in some way in order to em-
pirically evaluate whether the plot model achieves its in-
tended effect. Today, most narrative planners tacitly fol-
low Reiter and Dale’s (2000) Natural Language Generation
(NLG) pipeline, which starts with (plot) Content Determi-
nation, is followed by (discourse) Content Structuring, and
ends with (narration) Linguistic Realization. Plot planners
typically have a perfunctory NLG pipeline, to control for
any spurious discourse and narration effects on comprehen-
sion due to natural language. But because AI planning is
itself an effective model of NLG, a separate line of research
has focused on narrative discourse planning.

(Narrative) Discourse Planning
As in conventional discourse planning, narrative plans are
meant to reflect the informational and intentional structure

of a discourse (Grosz and Sidner 1986): a sequence of com-
municative actions that are intended to evolve the mental
state of the audience from its (initial) state prior to expe-
riencing the discourse to an author-desired one.

Thus, when representing discourse, the narrative prob-
lem is similar to the more general discourse planning one
(Garoufi 2014). This is because the story director relies on
the framing of utterances as speech actions and treats com-
munication as a goal-oriented process in the space of audi-
ence beliefs (Cohen and Perrault 1979). But unlike its more
general formulation (cf. Gatt and Krahmer, 2018), narra-
tive discourse planning does not assume that the beliefs of
the audience monotonically increase over time. Nor does
it assume that the goal must be a belief that the audience
should obtain at the end of the discourse. In fact, the audi-
ence’s belief dynamics – i.e., the trajectory of belief expan-
sion, contraction, and revision operations (cf. Alchourrón,
Gärdenfors, and Makinson, 1985) – is a key determinant of
narrative coherence; i.e., that the artifact is received as a nar-
rative (Herman 2013). This quality is particularly important
in human-AI applications: information parsed by people as a
story is better comprehended and better retained by them rel-
ative to non-story information (Fisher and Radvansky 2018).

In the pipeline approach, the input plot plan πplot repre-
sents the knowledge base and informs the material com-
municative goals that the narrative discourse planner will
strive for. Thus, elements of πplot remain fixed and are rei-
fied: they become part of the language L for the narrative
discourse problem. Narrative discourse planning operates
in belief space, and thus L also admits statements about
belief—these are used to specify the expected audience’s
mental state before narration I , the author-desired mental
state outcome for the plot’s telling G, and the communica-
tion actions A that will effect changes in audience belief.

Thus, for narrative discourse planning, the actions in A
tacitly specify a model of belief-based narrative-theoretic
phenomena: they manipulate the presentation of plot de-
tails to elicit particular belief dynamics in audiences, which
in turn result in particular narrative effects. Examples in-
clude the use of staging to direct audience attention as in
MISER (Matthews et al. 2017) and the elicitation of audience
inferencing via INFER (Niehaus and Young 2014).

Narration Planning
Narrative discourse planners are often tightly-coupled to the
narration, such that a solution narrative discourse plan is it-
self the realization in a given medium. As a result, narration
planning is relatively under-explored; the FIREBOLT cine-
matic realizer (Thorne et al. 2019) is a notable exception.

Other work in this area has sought to break-away from
the NLG pipeline, under the rationale that the storytelling’s
form (i.e., discourse and narration) cannot be separate from
its (plot) content (Elliott 2004). Work includes adapting
the direction of the pipeline via specification of plot-level
landmarks based on required discourse “snapshots” as in
PLOTSHOT (Cardona-Rivera and Li 2016), as well as do-
ing away with the pipeline altogether in order to co-evolve
plot and discourse (coupled to narration) simultaneously as
in BIPOCL (Winer and Young 2016).



Three Key Narrative Planning Paradigms
Techniques to solve narrative problems are tightly-coupled
to a problem representation—the one needed to formalize
the particular class of narrative phenomena of interest to the
modeler. A fundamental assumption they share is that story-
telling is computationally well-modeled as a search process.

At the same time, different planning paradigms afford dif-
ferent ways of modeling this search process and transitively,
how to think about modeling narrative phenomena. Different
paradigms offer different spaces that shape the story direc-
tor’s range of generatable stories, or expressive range (Sum-
merville 2018). We cover three broadly-used paradigms.

Modeling Narrative via Plan-space Planning
Plan-space search operates over a graph in which nodes rep-
resent partial-plans and arcs represent plan refinement oper-
ations (Kambhampati, Knoblock, and Yang 1995). For ex-
ample, in POCL planning (Weld 1994), refinements are in-
troduced to guarantee that (1) no preconditions remain un-
satisfied (recorded via causal links), and (2) no action in the
plan could be ordered such that it threatens to undo (estab-
lish the opposite condition of) a causal link between two
other actions. These respectively are Open Condition (OC)
and Threatened Link (TL) flaws.

Plan-space narrative planning affords modeling story phe-
nomena in terms of narrative-theoretic plan construction
flaws and fixes. That is, a modeler must add (to OC and TL)
new classes of flaws and fixes that in some way capture a di-
mension of plan quality with narrative import. For example,
IPOCL introduced three flaws to model the intention dynam-
ics that make character actions more believable when nar-
rated. When IPOCL adds an action a ∈ AI to fix some other
flaw, it must guarantee that a is at some point added to a
sub-plan πgc ⊆ π that accomplishes gc, ∀c ∈ CHA(a); while
a remains un-added, the partial-plan (under refinement) has
an Unknown Intent (UI) flaw. If any sub-plan πgc is not pre-
ceded by an action that establishes the effect intends(c, gc)
for the sub-plan’s c ∈ C, the partial-plan has an Open Mo-
tivation (OM) flaw, fixable by adding such an action. And
if any two sub-plans π1

gc , π
2
gc ⊆ π assert opposite sub-goals

(i.e., gc1 = ¬gc2) the partial-plan has a Threatened Intent
(TI) flaw, fixable by ordering π1

gc after π2
gc or vice-versa.

This modeling strategy is attractive in that it directly
shapes the underlying search space in a way that facili-
tates providing theoretical guarantees about the space of so-
lutions. Flaws and their fixes respectively identify partial-
plans that would not be solutions to a given narrative-
theoretic problem class, and the algorithmic means to re-
fine partial-plans such that they do become solutions (or fail
in the attempt). The full modeling strategy then is to em-
pirically demonstrate that narrative plans with the structural
quality to-be-preserved (via flaw detection and refinement)
do in fact elicit (in audiences) a particular narrative-theoretic
effect of interest to the modeler. The drawback of plan-space
narrative planners lies in their performance, but plan-space
heuristics which seek to offset that penalty, such as those
codified by VHPOP (Younes and Simmons 2003), give in-
sights into potential directions.

Modeling Narrative via Hierarchical Planning
Hierarchical formalisms are varied, but broadly share the
property of being more expressive and complex than clas-
sical planning: STRIPS-style primitive actions are comple-
mented with isomorphic more-abstract compound actions
that require decomposition, or associated sub-plan (Bercher,
Alford, and Höller 2019). Decomposition happens via meth-
ods representing sub-goals that require sub-plans, to be fur-
ther decomposed until all compound actions are reduced
to primitives. The idea is that a decomposition method
d = ⟨aC , π⊆⟩ maps a compound action aC to a sub-plan
π⊆ that depends on (i.e., has preconditions that relate to)
PRE(aC) and contributes to (i.e., has effects that relate to)
EFF(aC) = ADD(aC) ∪ DEL(aC) (Bercher et al. 2016).

Hierarchical narrative planning affords modeling story
phenomena in terms of narrative-theoretic recursive specifi-
cations, akin to grammar rewriting rules. This is well-suited
for representing a wide variety of story phenomena that de-
pend on abstraction, across the narrative layers. In plot, for
example, character intentions can be straightforwardly cod-
ified (Cavazza, Charles, and Mead 2002): a compound ac-
tion aC may assert intends(c, gc) ∈ ADD(aC) with its
decomposition being the sub-plan πgc that achieves it. An-
other example is DARSHAK (Jhala and Young 2010), which
uses hierarchies to bridge cinematic discourse and narration:
a compound action’s effects EFF(aC) represent discourse-
layer information about the plot being filmed, and a method
represents a cinematic idiom that identifies a narration-layer
sub-plan of film shots thought to achieve EFF(aC).

Modeling via hierarchical formalisms is attractive due its
potential for authorial leverage (Chen, Nelson, and Mateas
2009): that is, hierarchical story directors afford users signif-
icant power to define narrative plan quality aligned to their
authorial intent, across all narrative layers. Like in other hi-
erarchical planners, authors may introduce elements of “ad-
vice” to a hierarchical story director: decomposition meth-
ods afford ways to encode typical (not necessarily optimal)
action sequences or scripts (Schank and Abelson 1975). For
example, this is used in the GDPOP planner (Winer and
Cardona-Rivera 2018) to suggest idiomatic film edits dur-
ing the construction of a cinematic narration plan. A hier-
archical representation also provides a mechanism to ex-
ercise authorial leverage via specification of non-classical
temporally-extended goals. For example, partially-ordered
compound tasks have been used to scaffold the structure of
novel variants of the TV drama Friends (Cavazza, Charles,
and Mead 2002). Related approaches to such non-classical
goal specification are discussed below in the context of
heuristic search planning.

Modeling Narrative via Heuristic Search
Heuristic search planning, the dominant current approach,
plans via forward search through a state space, wherein
states are evaluated on the basis of general, domain-
independent heuristics (Bonet and Geffner 2001). In this
paradigm, the challenge is to discover how best to encode
narrative-theoretic phenomena in order to be able to lever-
age the efficient performance of such planners.



One strategy has been to encode narrative phenomena
as constraints within the narrative domain or as control
knowledge to scaffold the structure of narrative. In the NET-
WORKING system (Porteous, Charles, and Cavazza 2013),
the use of constraints scaffolds construction of story genre-
consistent sub-plans that enable characters to realize their in-
tentions. It has also featured as control knowledge to guide
story development, as with MADAME BOVARY, the affec-
tive storytelling system (Pizzi and Cavazza 2007). Such ap-
proaches have been shown to work well in practice, but they
fail to capture more general narrative-theoretic phenomena.

Hence, other work has looked to develop heuristics that
directly reason about narrative-theoretic properties. This
is the case for GLAIVE (Ware and Young 2014), a for-
ward search planner which generates motivationally coher-
ent narrative plans, as discussed earlier. GLAIVE introduces
a heuristic that incorporates character intentions via a goal
graph constructed via possible execution traces of plans
that contain intentional actions. This goal graph is then
used alongside an FF-style plan graph (Hoffmann and Nebel
2001) to calculate the heuristic estimate of states in search.

Compilation Techniques for Narrative Planning While
we focus on modeling narrative via extensions to planning
constructs, compilations do merit attention. A compilation
is a systematic remodelling of the narrative problem that af-
fords solving it via a classical planner. The potential of this
approach was demonstrated by Haslum, who was motivated
to leverage state-of-the-art heuristic search planners avail-
able at the time. Clearly, there are other benefits as well: a
common Planning Domain Description Language (McDer-
mott et al. 1998), and access to a greater number of general
solvers and heuristics. Modeling narrative via compilation is
thus a specific variant of modeling via heuristic search.

Haslum (2012) introduced two compilations that targeted
motivational coherence, first addressed by the IPOCL planner
as discussed earlier. The META PLANNING compilation is
not domain-independent, and is not guaranteed to produce
a semantically equivalent representation. That is, a classical
plan that solves the compiled problem is not guaranteed to be
motivationally coherent in the IPOCL sense. Haslum (p. 392)
notes: “although most of the time they will be.”

In contrast, the JUSTIFICATION TRACKING compilation
is guaranteed to be semantically equivalent. However, this
equivalence comes at a price—the resulting classical prob-
lem is exponentially larger, in terms of three factors in the
original narrative problem: (1) the number of possible char-
acter intentions codified via intends(c, gc); (2) the num-
ber of intentional actions a ∈ AI relevant to the respec-
tive intentions; and (3) the number of characters CHA(a) that
feature in the respective intentional actions a. When tested
on the original benchmark problem by Riedl and Young,
this compilation allowed forward-chaining A∗ with LM-
Cut heuristic (Helmert and Domshlak 2009) to outperform
IPOCL’s run time by three orders of magnitude. However,
these speedups are not always guaranteed (Teutenberg and
Porteous 2013). In fact, relative to FF applied to this compi-
lation, IMPRACTICAL is two orders of magnitude faster, and
GLAIVE is three orders of magnitude faster.

To our knowledge, the only other work that has pur-
sued narrative compilation is by Christensen, Nelson, and
Cardona-Rivera (2020), who proposed that character beliefs
(like those in HEADSPACE) can be compiled into a sim-
pler narrative problem that GLAIVE can solve. But because
GLAIVE is narrative-theoretic, the full potential of narra-
tive compilation to classical planning remains unknown. We
note however that the purpose of compilation is less on mod-
eling narrative phenomena per se, and more for the benefit
of more tractably and flexibly solving narrative problems.

Open Challenges
While many open challenges are common to narrative and
non-narrative planning, others are driven by the differenti-
ation required for plans to serve as narrative artifacts. We
discuss three of the most significant: expanding expressive
range, using desired cognitive effects to drive generation,
and performing ethically conscientious narrative planning.

Increased Expressive Range There is a need to increase
the expressive range of narrative planning systems. Their ex-
pressive range – the breadth of structural features of out-
put artifacts – must differ from those of conventional plan-
ning because the structural features of narrative impose a
set of distinct properties not readily accountable for by con-
ventional planning knowledge representations. For example,
plot structures contain actions that fail, explicit conflict be-
tween the actions and goals of their agents, and controlled
increases in potential but unrealized threats to a plan’s ex-
ecution. Narrative discourse elements may work to inten-
tionally obfuscate aspects of their domain of discourse from
a reader or viewer in the audience. They may intentionally
drive false beliefs or they may carefully curate and promote
uncertainty, prompt repeated belief revision around specific
concepts, play off of the relationships between the time of
story events and the time of their telling, and focus as much
on the trajectory of cognitive and emotional states during the
experience of a reader as the set of beliefs they hold at the
end of a narrative experience.

Cognitive-driven Narrative Generation There is a need
to strengthen our knowledge of the connection between nar-
rative generation and narrative comprehension. In the field
of cognitive psychology, narrative comprehension has long
been studied by building and refining cognitive models (e.g.,
Graesser and Franklin 1990). These models generally posit
that human readers progressively construct a mental concept
graph during narrative comprehension that represents events
in a story and their causal, temporal and spatial relationships,
character intentions, and other elements with parallels to the
contents of plans and their search spaces. So similar are
the parallels between representations in the two fields that
narrative planning researchers have adapted the experimen-
tal methods used to validate these cognitive models for use
by psychologists in evaluating the motivational coherence
of generated plans (Riedl and Young 2010). However, little
work has been done to directly take in to account compre-
hension during narrative generation. Further, no work to date
has accounted for the expected cognitive burden involved in
comprehending a planner-generated story.



Ethically Conscientious Narrative Planning Narratives
are powerful communicative tools (Suzuki et al. 2018): they
educate, inspire, entertain, and effect behavioral change in
long-lasting ways. As a result, narrative planners that can
carefully scaffold the construction of mental and event mod-
els has great promise, but also great potential for harm (Co-
man and Aha 2017). Disinformation campaigns, radicaliza-
tion narratives, and the codification of stereotype knowledge
could potentially be amplified through the computational
support that narrative planners offer.

We believe there is potential to explore plan-based user
models that simulate how groups of users might interpret the
output of narrative planners, and thereby drive the construc-
tion of a narrative plan toward solutions that are safer than
sibling outcomes in the space of alternatives. This would be
possible by using existing work that already predicts nor-
mative answers to questions about stories (Cardona-Rivera
et al. 2016). We foresee the use of predicted comprehension
to prune plans in the search space that do not satisfy a “com-
prehension constraint;” i.e., some (to be discovered) metric
that codifies how likely it is that the intended comprehension
of the generated story actually manifests in the audience.

We also note that narrative planning might help us struc-
turally understand (in terms of action, state, and heuristic
representations) what makes harmful stories so effective,
which may equip us to systematically guard against them.

Summative Review and Conclusion
We have reviewed narrative planning, covering the ratio-
nales and methodologies employed-to-date for modeling a
narrative’s plot, discourse, and narration. Our survey dis-
cussed knowledge representation and reasoning affordances
for narrative in technical depth, with the hope that we can
concretely connect to others within the automated planning
community and beyond.

Several modern human-centered AI systems use narra-
tive to structure interaction, resulting in skill-development
being more motivating, learning more fun, and intelligent
systems more understandable. Despite a reliance on nar-
rative, systems that are not plan-based or plan-like lack
computationally-precise understanding of how to structure
stories toward an eventual desired comprehension by peo-
ple. This results in ad-hoc accounts, loss of generality, and
re-inventing the wheel; problems that narrative planners are
designed to guard against (Young 1999). We thus expect that
narrative planning will continue to play a significant role in
the creation of theories and systems that aim to characterize
narrative intelligence writ large, and thereby help address a
foundational problem within artificial intelligence.
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