
Bronco: A Universal Authoring Language for
Controllable Text Generation

Jonas P. Knochelmann1[0000−0001−6314−8617] and Rogelio E. Cardona-Rivera1,2

1 School of Computing
2 The Entertainment Arts and Engineering Program

University of Utah, Salt Lake City, UT, USA
jonas.p.knochelmann@gmail.com, rogelio@eae.utah.edu

Abstract. We present Bronco: an in-development authoring language
for Turing-complete procedural text generation. Our language emerged
from a close examination of existing tools. This analysis led to our desire
of supporting users in specifying yielding grammars, a formalism we in-
vented that is more expressive than what several popular and available
solutions offer. With this formalism as our basis, we detail the qualities
of Bronco that expose its power in author-focused ways.

Keywords: text generation · authoring tools · programming language ·
grammars

1 Introduction

We presently enjoy a plethora of grammar-based tools for text-generation [6,8,11,
16,18,23]. Broadly, these tools share the aim of maximizing authorial leverage—
i.e., “the power a tool gives an author to define a quality interactive experience
in line with their goals, relative to the tool’s authorial complexity” [2]. Available
tools maximize leverage via different means [10] and each one strikes a different
balance between four dimensions of authorability : (1) the technical proficiency
expected of the end user, (2) the complexity an end user must contend with to
author content, (3) the clarity the system offers the end user about the system’s
state and dynamics during authorship, and (4) the controllability the system
offers the end user for generating content as they intend.

Despite the cornucopia of tools that explore the design space of authorability,
these are effectively powered by context-free grammars (CFGs). We contend
that, as a result, the tools in this space mostly explore circumscribed variations
on procedural text generation. In view of this gap, we designed Bronco (Fig. 1),
a generator that offers greater controllability than existing grammar-based tools.

Bronco affords this controllability by letting users author yielding grammars,
a novel formalism we have defined that is Turing-complete. Bronco offers a large
selection of expressive features that permit precise control in text generation.
The language currently supports features useful to our design practice and we
expect to refine its specification going forward. Although still nascent, we are
emboldened by its promise so far.

2 Knochelmann and Cardona-Rivera

Fig. 1. A screenshot from Bronco IDE with code describing the grammar (top), a
sample output (bottom-left) and some debug information (bottom-right).

In this paper, we detail Bronco’s design. We focus on its underlying formalism
in order to mathematically contrast it against two tools closest to us: Tracery [6]
and Expressionist [23]. We also discuss the expressive features the language
offers, and present a small case study in our experience writing grammars for
both Tracery and Bronco.

2 Literature Review and Background

Bronco is a universal text-generation authoring language—a language capable
of specifying Turing-complete grammars that can yield finely-controllable tem-
plated text; both as a stand-alone tool and as part of a larger system.

Within the design space of authorability, Bronco is Tracery-like in author-
focus and Expressionist-like in grammar-specification, but is more flexible than
both. To demonstrate how, we rely on the following formalisms and concepts.

2.1 Baseline Formalism: Context Free Grammars

Context-free grammars (CFGs) are a restricted subset of formal grammars no-
table for being the backbone of many text and story generation systems [1]; they
are also a Turing-incomplete formalism [24].

A CFG is a construct that formally describes how to form strings from a
(typically finite) set of grammar symbols Σ called an alphabet. This formal
description is specified as a set of hierarchically-nested rules P called produc-
tions, which relate a single non-terminal symbol (ones in the alphabet that are
designated as decomposable) to a finite sequence of other grammar symbols;
non-terminal symbols N ⊂ Σ in the sequence can be successively decomposed,
whereas terminal symbols T ⊂ Σ are elementary tokens.

Bronco: A Universal Authoring Language for Controllable Text Generation 3

The set of strings that can be formed from a given CFG is called a language.
All such strings begin with the distinguished start symbol nstart ∈ N , which is
special in that it never appears in the finite sequence of a production. Formally:

Definition 1 (Context-free Grammar). A quadruple G = 〈N,T, P, nstart〉.
N , T , P , and nstart are the non-terminal symbols, terminal symbols, productions,
and start symbol as described earlier. An element in Σ = N ∪ T is called a
grammar symbol, and N ∩ T = ∅. We refer to the elements of T and N as
terminals and non-terminals, respectively.

Each production p ∈ P is a pair of the form p : X → α, where X ∈ N is the
left-hand side and α ∈ Σ∗ is totally ordered set of 0-or-more grammar symbols
called the right-hand side. Applying p to substitute the left-hand side for the
right-hand side is called a derivation.

Finally, the start symbol never appears on the right-hand side of a produc-
tion (i.e. ∀p ∈ P : nstart 6⊆ α). The language L(G) is obtained by starting with
nstart and recursively deriving symbols ∀p ∈ P until only terminals remain; this
recursive sequence of derivations is a trace and can be visualized as a parse tree.

Figures 2 and 3 illustrate an example CFG and a sample trace of it visualized
as a parse-tree, respectively.

expr := expr + term | expr - term | term
term := term * factor | term / factor | factor

factor := digit | (expr)

Fig. 2. An example CFG in extended Backus-Naur
form for arithmetic expressions. The non-terminals
expr, term, and factor help capture precedence and
associativity of the operators +, -, *, and /.

expr

term

2

+expr

term

5

-expr

term

9

Fig. 3. Parse tree for a trace
of the expression 9-5+2 via
the CFG in Fig. 2.

2.2 Grammar-based Procedural Text Generators

CFGs are powerful, but by default are too rigid to support fluid text-based
authoring within interactive digital narratives. In fact, despite their marketing
as CFG-powered tools, Tracery and Expressionist deal with a formalism more
powerful than context-free grammars; namely, attribute grammars [21].

Attribute Grammars An attribute grammar (AG) augments a CFG by sup-
plying two additional constructs: attributes and semantic rules.

4 Knochelmann and Cardona-Rivera

Informally, an attribute can be thought of as a variable in a programming
language. Each attribute a can take on a range of values V ; for example, a can
be an integer number (making V = I), a rational number (V = R), or a string
literal (V = [A-Za-z0-9]+). A semantic rule is what specifies which value in V a
given attribute actually takes.

Every grammar symbol Xi ∈ Σ has an associated set of attributes A(Xi) =
{a0, . . . , am} (m ≥ 0) whose values collectively represent what Xi means. In
turn, every production p : X0 → X1X2 · · ·Xn (n ≥ 0) has an associated set
of semantic rules Rp that specify how an attribute Xi.a gets its value, for all
a ∈ A(Xi). For example, the CFG from Fig. 2 can be augmented as illustrated in
Fig. 4, which defines a value attribute for each of the non-terminals. Said value
is manipulated via the semantic rules next to each production.

expr := expr1 + term { expr.value = expr1.value + term.value; }
| expr1 - term { expr.value = expr1.value− term.value; }
| term { expr.value = term.value; }

term := term1 * factor { term.value = term1.value ∗ factor.value; }
| term1 / factor { term.value = term1.value/factor.value; }
| factor { term.value = factor.value; }

factor := digit { factor.value = valueOf(digit); }
| (expr) { factor.value = expr.value; }

Fig. 4. An AG that augments a CFG in extended Backus-Naur form with semantic
rules on the right-hand side. As derivations are applied, the value of expressions, terms,
and factors gets iteratively computed based on the semantic rules.

Every set of attributes A(Xi) can be partitioned into two disjoint subsets:
the inherited attributes I(Xi) and the synthesized attributes S(Xi). Whether
a ∈ A(Xi) belongs to I(Xi) or S(Xi) depends on how its value is determined.
If a is determined from attribute values at Xi or within derivations of Xi (i.e.
children of Xi in the parse tree), then it is synthesized ; a ∈ S(Xi). For example,
the parse tree in Fig. 5 contains only synthesized attributes. However, if a is
determined from attribute values within derivations that contain Xi (i.e. parents
of Xi in the parse tree), then it is inherited ; a ∈ I(Xi).

We require attribute grammars to be well-formed, which means that depen-
dencies between attributes must be acyclic. This constrains each attribute in the
grammar to be either synthesized or inherited-with-constraints. The inheritance
constraints manifest in the semantic rules, which should not introduce a circular
dependency between attributes. For a given production p : X0 → X1X2 · · ·Xn

with inherited attribute Xi.a computed by a rule r ∈ Rp, r is constrained to use
only: (a) inherited attributes associated with X0, or (b) attributes associated
with X1, X2, . . . , Xi−1 (symbols to the left of Xi). Formally, an AG is thus:

Bronco: A Universal Authoring Language for Controllable Text Generation 5

expr.value=6

term.value=2

2

+expr.value=4

term.value=5

5

-expr.value=9

term.value=9

9

Fig. 5. Parse tree for a trace of the expression 9-5+2 via the AG in Fig. 4. As the trace
happens, the value of intermediate expressions is recursively computed until the full
expression is parsed with a value of 6.

Definition 2 (Attribute Grammar). A triple AG = 〈G,A,R〉. G is a CFG
as in Def. 1, A is a set of attributes, and R is a set of semantic rules.

The set A is obtained from the attributes associated with each symbol Xi in
the grammar, and the set R is obtained from the semantic rules associated with
each production p ∈ P of the grammar. Letting Σ = N ∪ T ∈ G:

A =

G⋃
Xi∈Σ

{A(Xi)} and R =

G⋃
p∈P
{Rp}

Each Rp is a set of rules of the form Xi.a = f(y1, . . . , yk), k ≥ 0, such that all
the following is true:

(1) either (a) i = 0 and a ∈ S(X0) or (b) i > 0 and a ∈ I(Xj), 1 ≤ j < i;
(2) each y in f is an attribute associated with some symbol in production p; and
(3) f is the semantic function—a map from values y1, . . . , yk to value Xi.a.

Tracery and Expressionist: Attribute Grammar Metalanguages In view
of the preceding formalisms, Tracery and Expressionist are metalanguages that
facilitate authoring a unique kind of attribute grammar: a probabilistic one [15].
In essence, a probabilistic attribute grammar (pAG) indirectly assigns to each
element in L(AG) some probability of being generated as part of a trace. The
probabilities are directly specified as attachments to productions: if a derivation
involves a choice between one or more productions to apply for the same non-
terminal, a production is chosen based on its assigned probability.

Tracery is Effectively CFG-based. Tracery affords authoring a restricted form
of pAG’s: the choice between productions for the same non-terminal is done
randomly, making individual derivations for the non-terminal equally probable.

The Tracery metalanguage can be written in JSON; the one in Fig. 6 de-
fines an attribute grammar where the terminals are defined by symbols in string
quotes (e.g. “light”) and non-terminals are defined by symbols within number
signs (e.g. #move#). Productions are compactly written as name/value pairs de-
limited by commas. For example, the line “path”:[“stream”, “brook”, “path”,

6 Knochelmann and Cardona-Rivera

Fig. 6. Tracery’s online editor, displaying a JSON-encoded attribute grammar (left)
with one inherited attribute (highlighted, right). Productions are delimited by com-
mas, terminals are quoted string literals, and non-terminals are surrounded by the ‘#’
character (for example, #mood# is a non-terminal in the line production).

“ravine”, “forest”, “fence”, “stone wall”] is a specification of 7 productions; i.e.
path→“stream”, path→“brook”, path→“path”, and so on. Further, the start
symbol is always origin. Finally, the example in Fig. 6 defines an inherited at-
tribute called myPlace, which is generated from selecting a random production
(of the 7 applicable) to path. This inherited attribute is then used during the
derivation of the line non-terminal, as illustrated in in Fig. 7.

Tracery defines several built-in semantic functions beyond assignment of at-
tribute values; e.g. the Fig. 6 grammar uses the capitalize function to modify
the attribute values it obtains. While there are other such functions in the meta-
language, Tracery does not support defining new functions within its grammars.

As a result, attributes in a Tracery-language grammar are limited to taking
values only from finite domains (i.e. productions that randomly generate a value
from a list) and whenever the same attribute is used across derivations, its value
must also be the same. This makes Tracery-language grammars more compact
to specify than traditional CFGs, but still only as expressive as CFGs [17].

Expressionist is Potentially Turing-complete. Expressionist affords a finer-degree
of control in text generation than Tracery; it requires a user to directly specify
the probability distribution between the productions they write. Interestingly,
Expressionist’s expressive power depends on whether it is running as a stand-
alone authoring tool or as a tool within a host environment capable of generating
derivations for grammars written in the metalanguage.

When running via a stand-alone tool, the Expressionist metalanguage is as
expressive as Tracery, albeit with affordances that make its grammars more
compact than Tracery’s. Formally, all non-terminals Xi ∈ N in an Expressionist-
language grammar have two special attributes: the tagset ∈ I(Xi) and the
tags ∈ S(Xi). The value of Xi.tags is a string literal set by the author, intended

Bronco: A Universal Authoring Language for Controllable Text Generation 7

origin

line
{Capitalize(mood1)}

substance4 “light”

“with”

mood3 “warm”

“was”

path.myPlace0=“stream”

“, the”

mood2 “clear”

“and”

mood1 “darkened”

path.myPlace0=“stream” “stream”

Fig. 7. A parse tree for a trace of the Tracery-language grammar in Fig. 6, read from top
to bottom (derivations closer to the top happen earlier). Tracery supports randomly-
generated attributes that are inherited elsewhere in the tree (e.g. path.myPlace, above).

to represent a semantic annotation of interest. The value of Xi.tagset is a string
literal set by the Expressionist tool during a trace. Every time a production
p : X0 → X1X2 · · ·Xn is applied, X0’s tags are simply concatenated to the
tagset of X1X2 · · ·Xn.

When running within a host environment (e.g. a game world), Expressionist
is potentially Turing-complete; it depends on whether the host is (1) capable of
parsing Xi.tags or Xi.tagset as programming instructions for the environment,
and (2) the environment itself is Turing-complete. If both conditions are met, Ex-
pressionist offers a powerful metalanguage akin to a probabilistic programming
language [22]. In this mode, an attribute Xi.a’s values are non-deterministically
dependent on the host’s state, and vice-versa. This power comes at the cost
of needing to engineer a non-trivial amount of machinery to enable it, which
presents a considerable trade-off in its use.

Other Related Text Generators The remaining tools we discuss in this sec-
tion are all less expressive than Bronco and/or further afield in their design
than either Tracery or Expressionist. However, the ones we mention next have
particular features similar to our system. Bronco is like Ink [13, 14] – a narra-
tive scripting language for game developers – in that it affords quick access to
word-by-word variation. Further, Bronco is like Blabbeur [18] – a CFG-powered
language for text generation specifically designed for development in Unity – in
that it affords easy and explicit limiting of a sub-structures within the grammar.

Finally, MKULTRA [12] and Dunyazad [20] are project-specific tools for text
generation. Notably, they rely on definite-clause grammars rather than CFGs
(making them Prolog-like in nature). As such, they are as expressive as Bronco.
However, they are less focused on offering author-focused features that support
a person’s authoring experience.

8 Knochelmann and Cardona-Rivera

2.3 Problem Statement: The Motivation for Bronco

There remains a gap somewhere beyond Expressionist and Tracery in terms of
controllability. On the one hand, Expressionist is potentially-costly to imple-
ment while also bound in expressivity by its host environment. On the other
hand, Tracery is a more-compact alternative but effectively rigid in generative
capability. We are left with a motivating question: might there be an alternative?

Bronco emerged in our pursuit of an answer to that question, and we describe
its architecture next.

3 Bronco

3.1 Design Considerations and Qualitative Rationale

We propose to explore greater controllability for procedural text generation via
a Turing complete formalism. This aim, combined with our observation of the
successes and shortcomings of the tools discussed in the previous section, led
us to the following list of requirements we believe our tool must fulfill to push
the boundaries of authorability toward greater authorial leverage. Based on our
analysis, the tool...

1. ...should be easily integratable with other systems in an existing project. Text
generation is, more often than not, a relatively small part of a project’s expe-
rience. Thus, we cannot expect practitioners to base their code’s architecture
around the generator; the tool should ideally work in any architecture.

2. ...should provide many ways to easily limit the output of the generator. The
simplest possible CFG derivation system provides no control at all over the
output, and most of the unique features in existing tools provide various
ways of limiting the random possibility space.

3. ...should have in built, general-purpose logic. No matter how many pre-built
features a tool comes with, there will always be certain things it is unable
to do. A tool’s general-purpose logic should support users to program their
own functionality, for the cases when pre-built functionality falls short.

4. ...should be easily extensible. Similar to the previous point, but focused on
how the general-purpose logic of the language manifests. Ideally, the tool
should support the development of features via its own language or an
industry-grade programming language.

5. ...should be accessible to non-programmers. This requirement is one that
many existing tools have tried to fulfill. Because writing makes up such
a large portion of creating a text generator, it stands to reason that profes-
sional writers should be able to use the tool, not just programmers.

6. ...should be easier to use than implementing a generator from scratch. Ar-
guably the most important, one that all existing tools have succeeded in.
However, it must be carefully counter-balanced with the goal of making it
author-focused and easy to use.

Bronco: A Universal Authoring Language for Controllable Text Generation 9

With this list of requirements laid out, we may construct an image of what
such a tool would look like. In order to be easily integrated and extended upon,
we decided our tool should exist at a library level in a language that is commonly
used in development, and game development in particular. Further, this library
should simultaneously exist as a standalone portion of the code base and have
many points where programmers are able to inject external code.

In order that users of the tool have fluent access to limiting the genera-
tor’s output, general-purpose logic, and that the tool be easily accessible to
non-programmers, the generators should be authored via a custom-built, text-
based programming language. This language could then be stored in separate
files such that non-programmers could edit them without entering the code base.
The general-purpose logic and output limiting then could be accessed in a sim-
ilar way to simple general-purpose programming languages. Having access to
a miniaturized general-purpose language within the generator language would
also make it easier to access features extended from the base language. The
aforementioned library then would be responsible for parsing this language and
producing a generator runnable in the implementing language.

To meet the final point, both the language and the library need to be designed
with the end-user in mind. For the language, this means a minimal syntax that
gives very quick access to the design patterns most commonly used in a text
generator. For the library, whatever complexity exists under the hood, a limited
set of interactions should be exposed to the end programmer.

We now have a fair idea of what a generative text tool for game development
should look like: It should be a library in a popular language that parses a
custom-built programming language both of which are designed for usability.

3.2 A Formal View Of Bronco

The formalism underlying Bronco is a variant of attribute grammars we’re calling
yielding grammars (YG). Programmable, this system defines symbols as objects
that provide a function definition for yield, which takes zero or more symbols
as arguments, must return another symbol. The only other requirement is that
successively calling the yield function on the return value of the previous yield
will eventually result in a terminal symbol, which is a defined as a symbol that
yields itself. This process of repeated yielding is called flattening.

This formalism is somewhat similar to the Lambda Calculus, in that it is
entirely made up of function-like objects [3]. Indeed, it was designed with the
hope that it would be used in a functional manner. It differs only in the fact
that symbols may not be deterministic, and may have an internal state that can
be assessed and modified by other symbols.

This formalism, which was synthesized iteratively during development, has
proven invaluable in the construction of Bronco. It benefits both the end-user
programming in the language and the developer writings extensions to the lan-
guage in addition to providing Turing-completeness. For the end-user, it removes
the distinction between calling a function and referencing a function, and most
of the difficulties that come with a type system: since writing in the language

10 Knochelmann and Cardona-Rivera

is effectively constructing a tree, users can rely on the flattening algorithm to
collapse the tree into a final output text without considering when exactly each
branch of the tree is flattened. If a symbol requires a certain type for one of
its arguments, for example, the flattening algorithm will flatten that argument’s
branch until the specified type is reached, throwing an error if it reaches a termi-
nal first. For developers extending Bronco with custom symbols, they can again
lean on the flattening algorithm. They are only required to define an evaluation,
and that evaluation only needs to provide a symbol that is one step closer to a
terminal.

Formally, yielding grammars are defined as follows:

Definition 3 (Yielding Grammar). An attribute grammar Y = (G,A,R) as
defined previously, with the following restrictions:

Every production p ∈ P of the grammar, must have the form x → y or
x : p0, p1, ... → y where x ∈ N and y, p0, p1, ... ∈ N ∪ T . p0, p1, ... are called
parameters, and are treated by Rp as if (x, p0, p1, ...) is a single symbol. (e.i. the
attributes of x, p0, p1, ... are all defined by Rp as well as y’s) Within this, all
productions must be inherited.

3.3 Authoring in Bronco

As a piece of software, Bronco is a toolset consisting of a custom-built program-
ming language for authoring procedural text generators, and a highly extensible
C# library that can parse the Bronco language, and output the generated text.
The library portion of the toolset is largely backend that models the internal
grammar. It fronts the parser, as well as a range of objects to be derived, and
a way to inject derived objects into the parser. In addition to these, a small
authoring tool simply titled “Bronco IDE” has been built to make authoring in
Bronco as easy as possible (See Fig.1).

Bronco is atomically made up of symbols. All data types in Bronco are sym-
bols including, numbers, text, and functions. The language itself has taken heavy
inspiration from Markdown and the minimalist syntax of Ink [7, 13]. Like Trac-
ery, and Blabbeur, Bronco grammars are defined in terms of random production
rules, which are called bags [6, 18]; a type of symbol. Each bag is made up of
a title (denoted ‘@’ followed by the bag’s title; e.g. @start), and a number of
items (written as normal text separated by newlines or ‘|’), one of which will be
picked at random upon a reference to the bag’s title (denoted by the bag’s title
surrounded by ‘<>’). In addition to user-defined bags, Bronco comes with a large
number of other symbols that can be easily referenced in the same format, and
provide other functionality. These predefined symbols can also be easily added to
via the C# library, which is the primary method of adding custom functionality
to the language. Fig. 8 shows basic Bronco syntax.

When defining a bag, you may include arguments that can then be referenced
by the bag’s item (denoted with ‘:’, followed by arguments separated by ‘,’).
Similarly, most of the predefined symbols also take one or more arguments.
Arguments can then be added to any symbol reference, which modifies the way

Bronco: A Universal Authoring Language for Controllable Text Generation 11

@start
My favorite color is <color>
I like the color <color>

@color
red| green| blue| yellow| dark <color>

My favorite color is blue

I like the color green

I like the color dark red

Fig. 8. Bronco code that generates a description of a favorite color (left), and sample
output (right).

that symbol resolves into text. This lets users of Bronco interact with symbols
in a similiar way to how they might interact with functions in a traditional
programming language.

With symbols that take arguments, comes general-purpose logic. We are able
to support conditional statements for example, as a symbol whose first argument
must be a Boolean expression, whose second argument will be included in the
output if the first argument resolves to true, and whose third argument will be
included otherwise. In a similar manner, we are able to support operators for
things like arithmetic and comparisons. Fig. 9 showcases the use of arguments
and general-purpose logic.

@start
My favorite number is <set: favNum, (randomI: 1, 20)>, because it is
<numFact: favNum>!

@numFact: num
<if: (gt: num, 5), `greater than 5`, `less than 6`>
<if: (equal: num, 13), `unlucky`, `isn't unlucky like 13`>
just a good number

My favorite number is 7, because it is isn't unlucky like 13!

My favorite number is 15, because it is greater than 5!

My favorite number is 3, because it is just a good number!

Fig. 9. Bronco code that generates a description of a favorite number (left), and sample
output (right).

In addition to the features mentioned so far, Bronco gains much expressive
power by its inclusion of conditions and weights. A weight is just an easily
specifiable constant number that changes the probability of a given item being
picked from a bag (a ‘%’ followed by a number, written at the end of a bag
item). To dynamically change the probability of items being picked, conditions
can be attached to an item (a symbol surrounded by ‘[]’ at the end of a bag
item). Conditions can be any symbol that resolves to a number, which is then
multiplied by the base weight for a dynamic weight. Since Boolean type symbols
are treated as a type of number in Bronco (with a value of 1 for true and 0
for false), items can be effectively enabled or disabled from a bag by entirely
customizable logic. Fig. 10 shows conditions on bag items.

As a means of storing and relating data more abstractly, symbols in Bronco
can have tags attached to them (one or more ‘#’ followed by the identifier,
written at the end of a bag item). A tag is a key-value pair consisting of a
text-identifier and a number. Tags do not have any implicit function but can
be accessed, compared, and manipulated through various predefined symbols in

12 Knochelmann and Cardona-Rivera

@start
<draw>The <numToValue: value> of <numToSuit: suit>s

@draw
<do: (set: value, (randomI: 1, 13)), (set: suit, (randomI: 0, 4))>

@numToSuit: num
Spade[(equal: num, 0)]| Heart[(equal: num, 1)]| Diamond[(equal: num, 2)]|
Club[(equal: num, 3)]

@numToValue: num
Ace[(equal: num, 1)]| Jack[(equal: num, 11)]| Queen[(equal: num, 12)]|
King[(equal: num, 13)]
<num>[(and: (gt: num, 1),(lt: num, 11))]

The 3 of Hearts

The King of Spades

The Queen of Diamonds

Fig. 10. Bronco code that generates a description of a playing card (left), and sample
output (right).

Bronco. This allows authors to annotate a large list of words with a theme for
example, and then increase the probability of a word being picked if it matches a
theme specified in advance. Tags might also be accumulated, during one part of
the generation, and then used as a filter in a later part of the generation, ensuring
consistency. Fig. 11 demonstrates the use of tags for consistent sentences.

@start
<do: (set: pro, pronoun)><cap: (their: pro)> favorite color is <set:
favColor, color>. <cap: (they: pro)> <like: pro> it, because it goes so
well with <colorCompliment: favColor>.

@color
red#red| green#green| yellow#yellow| blue#blue| purple#purple|
orange#orange

@colorCompliment: color [(tagOverlap: color, item)]
green#red| red#green| purple#yellow| orange#blue| yellow#purple|
blue#orange

@they: pro [(tagOverlap: pro, item)]
they#they| she#she| he#he

@their: pro [(tagOverlap: pro, item)]
their#they| her#she| his#he

@like: pro [(tagOverlap: pro, item)]
like#they| likes#he #she

@pronoun
they#they| she#she| he#he

Her favorite color is green. She likes it, because it goes so
well with red.

His favorite color is yellow. He likes it, because it goes so
well with purple.

Their favorite color is purple. They like it, because it goes so
well with yellow.

Fig. 11. Bronco code that generates a consistent sentence (left), and sample output
(right).

4 Assessment

We will be assessing the performance of Bronco with two distinct methods:
Firstly, we will consider the notion of expressivness as it applied to Bronco and
how it compares to Tracery. The second is similar to that used by Martens
and Simmons and their language Inbox, where it is directly compared with an
existing tool in a similar space [19]. We have chosen to evaluate Bronco with
respect to Tracery, because it is the most popular and direct influence for Bronco.

Bronco: A Universal Authoring Language for Controllable Text Generation 13

Expressionist, another popular and strong influence, requires its users to write
their own expansion engines, which makes it difficult to compare objectively, so
we will not be comparing with it.

4.1 Expressiveness

We rely on Felleisen’s [9] notion of expressiveness to assess Bronco. Conceptually,
we can say that one Turing-complete language is more expressive than another
in a particular context, if a local change in the first language would require a
global change in the second language in order to achieve the same behavior.

As discussed in Sec. 2.2, Tracery is not strictly context-free but is only ca-
pable of referencing branches taken earlier in the expansion by outputting the
exact text that branch output. Bronco on the other hand, can reference previous
branches by outputting text from any definable function of earlier expansions.
Although a great deal of complexity is possible within Tracery’s system, in the
general case, the number of additional branches needed increases combinatori-
ally with the number of previous branches that need to be taken into account. If
branch Q has an outcome dependent on the outcome of an earlier branch P , then
Tracery-like systems requires an additional n branches, where n is the number
of branches between P and Q. In a Bronco-like system, only 1 extra branch is
needed.

As an example, consider a generated story in which a character may or may
not find a key at the beginning. At a certain point far into the story, the character
can use the key, if they have it, to unlock a door, resulting in a new section of
generated story. Though this is certainly possible in Tracery, it would require
two entirely separate branches for finding the key or not finding the key up to the
point where the key-related part of the story ends. Fig. 12 shows a more general
example in which branch C will only be taken if A is taken first, and the same
thing for D and B. Even if N1, N2, ..., Nn are unaffected by the outcome of P ,
they must be repeated if there is no general way to reference earlier expansions.
The increase in size from the first figure to the second is multiplied with every
new branch that needs to be considered.

4.2 Language Comparison With Tracery

Fig. 13 represents the same generator written in Bronco on the left, and Tracery
on the right. This example was taken directly from the Tracery website [4].
The figure serves to demonstrate the advantage of a custom-built language for
procedural generation by the neatness of the Bronco code when compared with
the Tracery code. To put this more quantitatively (admittedly at a very coarse
grain of detail), we can count the number of characters that are being used
for structural organization versus the number of characters that can actually
be output by the generator (this count ignores characters in aesthetic white
space and indirect functions like capitalization and variable assignment). For
this generator, both versions have 313 characters that can appear in the output,
Bronco uses 88 characters for organization (Including the newlines that Bronco

14 Knochelmann and Cardona-Rivera

origin

Q
D

C

Nn

...

N2

N1

P
B

A

origin P

B

Q D

Nn

...

N2

N1

A

Q C

Nn

...

N2

N1

Fig. 12. Trees describing the structure of two grammars, the first without dependend-
cies between P and Q and the second with dependencies.

@start
<do: (set: myPlace, path)><line>

@line
<cap: mood> and <mood>, the <myPlace> was <mood>
with <substance>
<cap: nearby> <a: myPlace> <ed: move> through the
<path>, filling me with <substance>

@nearby
beyond the <path>| far away| ahead| behind me

@substance
light| reflections| mist| shadow| darkness|
brightness| gaiety| merriment

@mood
overcast| alight| clear| darkened| blue|
shadowed| illuminated| silver| cool| warm|
summer-warmed

@path
stream| brook| path| ravine| forest| fence| stone
wall

@move
spiral| twirl| curl| dance| twine| weave|
meander| wander| flow

{
"origin":
["[myPlace: #path#]#line#"],

"line":
["#mood.capitalize# and #mood#, the #myPlace# was
#mood# with #substance#",
"#nearby.capitalize# #myPlace.a# #move.ed#
through the #path#, filling me with
#substance#"],

"nearby":
["beyond the #path#", "far away", "ahead",
"behind me"],

"substance":
["light", "reflections", "mist", "shadow",
"darkness", "brightness", "gaiety", "merriment"],

"mood":
["overcast", "alight", "clear", "darkened",
"blue", "shadowed", "illuminated", "silver",
"cool", "warm", "summer-warmed"],

"path":
["stream", "brook", "path", "ravine", "forest",
"fence", "stone wall"],

"move":
["spiral", "twirl", "curl", "dance", "twine",
"weave", "meander", "wander", "flow"]
}

Fig. 13. The same generator written in Bronco (left), and Tracery (Right)

Bronco: A Universal Authoring Language for Controllable Text Generation 15

uses to separate items) and Tracery uses 165. Although it is difficult to conduct
this kind of count objectively, these numbers suggest that about twice as much
redundant typing is needed to write this generator in Tracery as it is in Bronco.
To be sure, writing in JSON has many advantages, such as being relatively
understandable by a majority of programmers, and being easily parsed.

@start
<intro><battle>

@battle
The <char1> makes the first move! \n<char1Turn>| The <char2> makes the
first move! \n<char2Turn>

@char1Turn
<charTurn: char1, char2, hp2><do: (set: hp2, dmgHP)><if: (gt: hp2, 0),
char2Turn, (battleEnd: char1)>

@char2Turn
<charTurn: char2, char1, hp1><do: (set: hp1, dmgHP)><if: (gt: hp1, 0),
char1Turn, (battleEnd: char2)>

@charTurn: charMe, charEn, hpEn
The <charMe> attacks the <charEn>! <attack: charEn, hpEn>\n

@attack: char, hp
The attack deals <set: dmg, (randomI: 5, 20)> damage, leaving the <char>
<dmgDescribe: hp, dmg>| The attack misses the <char>.<do: (set: dmgHP,
hp)>

@dmgDescribe: hp, dmg
with <set: dmgHP, (sub: hp, dmg)>.[(gt: hp, dmg)]| dead<do: (set: dmgHP,
0)>.[(not: (gt: hp, dmg))]

@intro
<cap: (a: (set: char1, animal))><do: (set: hp1, hp)> and <a: (set: char2,
animal)><do: (set: hp2, hp)> prepare for battle.\n

@battleEnd: char
The <char> is victorious!

@animal
ant<do: (set: hp, 1)>| snake<do: (set: hp, 20)>| rat<do: (set: hp, 10)>|
bear<do: (set: hp, 50)>| dragon<do: (set: hp, 70)>| emu<do: (set: hp,

30)>| lion<do: (set: hp, 40)>

A snake and a rat prepare for battle.
The rat makes the first move!
The rat attacks the snake! The attack deals 17 damage,
leaving the snake with 3.
The snake attacks the rat! The attack misses the rat.
The rat attacks the snake! The attack misses the snake.
The snake attacks the rat! The attack deals 8 damage,
leaving the rat with 2.
The rat attacks the snake! The attack deals 17 damage,
leaving the snake dead.
The rat is victorious!

Fig. 14. Bronco code that generates the description of a battle (left), and sample
output (right).

Fig. 14 and Fig. 11 show two simple generators in Bronco that would be
difficult to write in the default version Tracery. The code in Fig. 14 generates
a simple description of a battle that you might see in a roll playing game. It
makes use of basic dynamic elements like numeric variables and conditional
recursion. The example in Fig. 11 generates two sentences describing a person’s
favorite color. It is notable for its use of Bronco’s tagging system, which let it
use consistent pronouns and to track a color’s compliment. Although Tracery
is fully integrated with JavaScript making it capable of performing any kind of
computation, neither of the two examples given could take meaningful advantage
of Tracery’s in built features.

16 Knochelmann and Cardona-Rivera

5 Future Work

One area in need of improvement is the tagging system. It has already proven
very useful for communicating abstract connections such as correct pronouns, an
area that is difficult in Tracery [5]. However, the way tags currently work makes
it difficult to take full advantage of them. Ideally, they should make it effortless
for branches to have prerequisites or be mutually exclusive, but this is currently
not the case. Their function will need to be re-worked in the future.

Possibly the most obvious weakness in Bronco right now is its syntax. Gener-
ally speaking, there are many areas of the syntax that should be easier to write
for users than they are. This is no individual issue, but a broad set of problems
that need to be addressed for Bronco to meet its goal of ease of use.

A large portion of this research that has not been discussed in this paper
is Bronco’s integration into a game that contextualizes Bronco’s design. In this
game, characters are procedurally generated, and procedural text will be used
for their in-game conversations. This project demands a nuanced, dynamic, and
realistic output. We expect that this game will continue to yield insights for
the design of Bronco. Fully explicating how the game and generator designs are
mutually constraining and reinforcing will be a third area of our future effort.

6 Conclusion

In this paper, we (to our knowledge, for the first time) formally described two
landmark generative text systems: Tracery and Expressionist. We did so in or-
der to distinguish our novel system, Bronco, as a Turing-complete procedural
text generator that is computationally more expressive than either of these. In
summary, while Tracery/Expressionist are marketed as though they depend on
context-free grammars, the formal properties they rely on makes them instead
dependent on restricted attribute grammars. Bronco’s expressivity stems from
our novel yielding grammar formalism, which carefully relaxes the restrictions
that Tracery/Expressionist impose on their underlying attribute grammars. This
expressivity was necessary for us; in specific, generating text within a dynamic
domain that relies on conditional expansions (as discussed earlier) is too onerous
to specify in Tracery relative to Bronco.

At the same time, we offer a necessary caveat: our distinction should not
be construed as an implied claim of universal superiority. We look to Tracery,
Expressionist, and all systems cited herein with profound respect and admira-
tion, and note that Bronco is pragmatically neither better nor worse than any
system we have cited; it is simply different. The question of how it is different
requires we be precise, which explains how our discussion centers on Bronco’s
unique advantages (as opposed to further explicating how prior systems serve as
distinct inspiration for our work). The choice of which procedural text generator
to use is highly context-specific and it is entirely possible that—in the words of
one our anonymous reviewers—Bronco “is likely to be another tool to be thrown
on the cornucopia, only to languish in lack of use.” While that comment reflects

Bronco: A Universal Authoring Language for Controllable Text Generation 17

an honest assessment of the difficulties in gaining widespread traction with par-
ticular tools, we are hopeful that Bronco pushes procedural text generation into
a heretofore under-explored corner of the authorability design space: one that
affords Turing-complete controllability.

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. #2046294. We also wish to thank Monthir Ali, Nancy N. Black-
burn, Michael Clemens, and the anonymous reviewers who were tremendously
helpful with their comments during peer review.

References

1. Black, J.B., Wilensky, R.: An evaluation of story grammars. Cognitive science 3(3),
213–229 (1979)

2. Chen, S., Nelson, M., Mateas, M.: Evaluating the authorial leverage of drama
management. In: Proceedings of the 5th AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment. pp. 136–141 (2009)

3. Church, A.: An unsolvable problem of elementary number theory. American Jour-
nal of Mathematics 58 (1936)

4. Compton, K.: Tracery. https://www.tracery.io/ (2015)
5. Compton, K.: Practical Low Effort PCG: Tracery and data-oriented PCG author-

ing. In: Roguelike Celebration (2016)
6. Compton, K., Kybartas, B., Mateas, M.: Tracery: An author-focused generative

text tool. In: Proceedings of the 8th International Conference on Interactive Digital
Storytelling (2015)

7. Cone, M.: Basic syntax — markdown guide. https://www.markdownguide.org/
basic-syntax/ (2022)

8. Dias, B.: Procedural Storytelling in Game Design, chap. Procedural Descriptions
in Voyageur. Taylor and Francis (2019)

9. Felleisen, M.: On the expressive power of programming languages. In: European
Symposium on Programming. pp. 134–151. Springer (1990)

10. Garbe, J.: Increasing Authorial Leverage in Generative Narrative Systems. Ph.D.
thesis, University of California, Santa Cruz (2020)

11. Grinblat, J.: Procedurally generating history in ’caves of qud’. In: Game Developers
Conference (2018)

12. Horswill, I.: Architectural issues for compositional dialog in games. In: Proceedings
of the Workshop on Games and Natural Language Processing at the 10th AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment (2014)

13. Humfrey, J.: Ink: The narrative scripting language behind ’80 days’ and ’sorcery!’.
In: Game Developers Conference (2016)

14. Inkle: Inkle: Ink. https://github.com/inkle/ink/blob/master/Documentation/
WritingWithInk.md (2021)

15. Jelinek, F., Lafferty, J.D., Mercer, R.L.: Basic methods of probabilistic context
free grammars. In: Speech Recognition and Understanding, pp. 345–360. Springer
(1992)

18 Knochelmann and Cardona-Rivera

16. Johnson, Z.: Beyond the mad lib (but just barely): an oral history of the ways in
which kingdom of loathing uses procedural text generation for flavor and humor.
In: Roguelike Celebration (2016)

17. Koster, C.H.: Affix grammars for natural languages. In: International summer
school on attribute grammars, applications, and systems. pp. 469–484. Springer
(1991)

18. Lessard, J., Kybartas, Q.: Blabbeur - an accessible text generation authoring sys-
tem for unity. In: Proceedings of the 14th International Conference on Interactive
Digital Storytelling (2021)

19. Martens, C., Simmons, R.J.: Inbox games: Poetics and authoring support. In: In-
ternational Conference on Interactive Digital Storytelling (2021)

20. Mawhorter, P.A.: Artificial Intelligence as a tool for understanding narrative
choices. Ph.D. thesis, University of California Santa Cruz (2016)

21. Paakki, J.: Attribute grammar paradigms—a high-level methodology in language
implementation. ACM Computing Surveys (CSUR) 27(2), 196–255 (1995)

22. Ryan, J., Mateas, M., Wardrip-Fruin, N.: Characters who speak their minds: Dia-
logue generation in talk of the town. In: 12th Artificial Intelligence and Interactive
Digital Entertainment Conference (2016)

23. Ryan, J., Seither, E., Mateas, M., Wardrip-Fruin, N.: Expressionist: An authoring
tool for in-game text generation. In: International Conference on Interactive Digital
Storytelling (2016)

24. Ullman, J., Hopcroft, J.: Introduction to automata theory, languages, and compu-
tation, chap. Chapter 4: Context-Free Grammars. Addison-Wesley (1979)

