
Moving Smartly 
An Introduction to Artificial

Intelligence Design in Games

Rogelio E. Cardona-Rivera
Ph.D. Candidate - AI for Games, NCSU

@recardona
#ECGC2015
http://rogel.io

Code is available here:
http://recardona.github.com/Eve

Design Tips are highlighted like this.

http://rogel.io
http://recardona.github.com/Eve

If you like this
presentation…  

(and me as a person)

Also, consider hiring me as a consultant
for your next game! 
http://rogel.io/consulting

Follow me on Twitter and let me know!  
@recardona

http://rogel.io/consulting

About Me
• Ph.D. Candidate at NCSU 

I study AI for Procedural Content Generation  
of Narrative

• Puerto Rican (hablo Español)

• Likes:  
AI, Games, Narrative, Psychology,  
Star Wars

• Dislikes:  
Being snobby, Unnecessary Complexity,
Harassment, Goobers

What this talk is about
• Discussing technical detail  

See “AI for Games” (2nd Ed.) by Millington and Funge 
for a fantastic reference/guide

• AI Design & Tradeoffs

• Demonstrating that AI is not hyper-complex  
(as some folks would have you try to believe)

• Demonstrating that AI is both science and art

• Making things that look cool

What this talk is not about
• A review of Trigonometry or Physics :(

• Optimization

• This is not the only way to do things ever™

• “Hey couldn’t you do this in a different way?”

- The answer is yes. It depends on what you
want.

Convention

• FooBar.java or FooBar have a special font
because they can be found in the code
we’re going to look at

Overview
• Overview prototyping game ‘engine’: Eve

• System Architecture & Important Data Structures

• Flocking behavior

- The DynamicArrive behavior & implementation

- The MovementBehavior factory

- The DynamicBlending behavior

The Eve Prototyping Engine

• Built on top of Processing in Java  
(http://processing.org)

• Code-driven engine, which we will mostly skip
over

• Has affordances for common game concepts
(there is a setup, update, draw architecture)

https://github.com/recardona/Eve

Checkout the “master” for the whole thing  
Checkout the “demo” to follow along

http://processing.org

Setup and Demo Eve

• I use Eclipse but feel free to use  
whatever Java environment you’d like

• Rogelio, remember to show the final 
product first

https://github.com/recardona/Eve

https://github.com/recardona/Eve

• Movement is the  
lowest level of the AI  
pipeline because it  
deals primarily with  
physics

• Movement Behaviors  
are similar:
- Input: Geometric Data about the world
- Output: Velocities or Accelerations they would

like to execute

Movement Behavior

• Movement is the  
lowest level of the AI  
pipeline because it  
deals primarily with  
physics

• Movement Behaviors  
are similar:
- Input: Geometric Data about the world
- Output: Velocities or Accelerations they would

like to execute

Movement Behavior

Design Tip #1: Because all movement
behaviors behave similarly, we can  

group them in a single interface  
(go to Eclipse, Rogelio)

Velocities or Accelerations?

• If a MovementBehavior returns velocity
information it is called Kinematic Movement
- Typically very rigid

• If a MovementBehavior returns acceleration
information it is called Dynamic Movement
- Typically very smooth

• We will focus on Dynamic Movement

DynamicSteeringOutput 
 implements SteeringOutput

- Container for Dynamic
Movement behaviors

- linearAcceleration  
(a PVector)

- angularAcceleration  
(a float value)

Data Structures we care
about (1/2)

angular acceleration as  
represented by a  

single value

Data Structures we care
about (2/2)

• Rigidbody2D.java

- position

- orientation

- velocity

- rotation

• AI Movement Behaviors will require information
about Rigidbody2D objects.

complex bodies represented
as a single point

• Rigidbody2D scopes out the most basic ones!

- position matching

- orientation matching

- velocity matching

- rotation matching

• Movement Behaviors perform one or more of
these types of calculations

One last thing about
Movement Behaviors…

• Rigidbody2D scopes out the most basic ones!

- position matching

- orientation matching

- velocity matching

- rotation matching

• Movement Behaviors perform one or more of
these types of calculations

One last thing about
Movement Behaviors…

Design Tip #2: Target the development 
of very basic behaviors and design 

ways to combine them fluidly

Flocking
Boids of a feather  

flock together

http://en.wikipedia.org/wiki/
Flocking_(behavior)

• Boid.java

http://en.wikipedia.org/wiki/Flocking_%28behavior%29

Flocking Overview
• Flocking is an emergent behavior

• At a high-level, flocking emerges when each Boid follows
a weighted blend of three different MovementBehaviors

• A FlockingAgent supports:

1. Arriving at the Flock’s center of mass

2. Matching the Flock’s velocity

3. Separating yourself from your neighbors

Flocking Overview
• Flocking is an emergent behavior

• At a high-level, flocking emerges when each Boid follows
a weighted blend of three different MovementBehaviors

• A FlockingAgent supports:

1. Arriving at the Flock’s center of mass"

2. Matching the Flock’s velocity

3. Separating yourself from your neighbors

Dynamic Arrive 
Movement Behavior

Dynamic Arrive

1. Get the direction to a target

2. Depending on how close we are to the target:

2.1.Calculate a target velocity with full speed

2.2.Calculate a target velocity with a scaled speed

2.3.Calculate a zero target velocity

3. Accelerate to target velocity

4. Return acceleration information

a position-matching movement behavior

How does the behavior
look?

We need to look at the
target!

Dynamic Look Where You
Are Going

1. Get the direction of the character’s velocity

2. Calculate a target rotational velocity

3. Accelerate to target rotational velocity

4. Return acceleration information

an orientation-matching movement behavior

But how do we combine
them?

With a
MovementBehaviorFactory!

MovementBehaviorFactory

• Conceptually, it’s an object that creates objects

• The ingredients are two MovementBehaviors

• The result is one MovementBehavior

- This composite behavior is the result of
combining the two MovementBehaviors

- How they are combined is up to you!

MovementBehaviorFactory

• Conceptually, it’s an object that creates objects

• The ingredients are two MovementBehaviors

• The result is one MovementBehavior

- This composite behavior is the result of
combining the two MovementBehaviors

- How they are combined is up to you!

Design Tip #2: Target the development 
of very basic behaviors and design 

ways to combine them fluidly

Dynamic Arrive++

• Since we need to match the position of a target
and the orientation of velocity we need an
additive combination of movement

• We’ll define a CompositeAddBehavior!

a position-matching & orientation-matching  
movement behavior

Much better :)

Flocking Overview
• Flocking is an emergent behavior

• At a high-level, flocking emerges when each Boid follows
a weighted blend of three different MovementBehaviors

• A FlockingAgent supports:

1. Arriving at the Flock’s center of mass

2. Matching the Flock’s velocity"

3. Separating yourself from your neighbors

Because my presentation time
is finite, I will describe other

behaviors conceptually.

Dynamic VelocityMatch

1. Get the direction to velocity of a target

2. Depending on how close we are to the target:

2.1.Calculate a target velocity with full speed

2.2.Calculate a target velocity with a scaled speed

2.3.Calculate a zero target velocity

3. Accelerate to target velocity

4. Return acceleration information

a velocity-matching movement behavior

Dynamic Separate

1. Identify which targets are too close

2. Calculate a repulsion strength based on how
close the “too close objects” are

3. Calculate a repulsion direction

4. Accelerate in repulsion direction with repulsion
strength

5. Return acceleration information

a position-avoiding movement behavior

Flocking Overview
• Flocking is an emergent behavior

• At a high-level, flocking emerges when each Boid follows
a weighted blend of three different MovementBehaviors

• A FlockingAgent supports:

1. Arriving at the Flock’s center of mass

2. Matching the Flock’s velocity

3. Separating yourself from your neighbors

Flocking Overview
• Flocking is an emergent behavior

• At a high-level, flocking emerges when each Boid follows
a weighted blend of three different MovementBehaviors

• A FlockingAgent supports:

1. Arriving at the Flock’s center of mass

2. Matching the Flock’s velocity

3. Separating yourself from your neighbors

Dynamic Blending 
Behavior

Dynamic Blending is simple

• As you may suspect:  
DynamicBlending = weighted sum

• We need good weights for each individual
behavior

- This is where part of the art comes in

Putting it all together

Flocking Overview
• Flocking is an emergent behavior

• At a high-level, flocking emerges when each Boid follows
a weighted blend of three different MovementBehaviors

• A FlockingAgent supports:

1. Arriving at the Flock’s center of mass

2. Matching the Flock’s velocity

3. Separating yourself from your neighbors

Where does the
flock go?

• Because the leader is trying to get away from 
the flock, and the flock is following the leader, 
there is a sort of tandem movement going on

et voilà

Acknowledgements

• Dr. David L. Roberts, NCSU

• The Liquid Narrative Group and its director,  
Dr. R. Michael Young

• The AI for Games book (2nd Ed.) by Millington
and Funge

Recap!
• Important Data Structures

• Flocking behavior

- The DynamicArrive behavior &
implementation

- The MovementBehavior factory

- The DynamicBlending behavior

Recap!
• Important Data Structures

• Flocking behavior

- The DynamicArrive behavior &
implementation

- The MovementBehavior factory

- The DynamicBlending behavior

Design Tip #1: Because all movement
behaviors behave similarly, we can  

group them in a single interface  
(go to Eclipse, Rogelio)

Recap!
• Important Data Structures

• Flocking behavior

- The DynamicArrive behavior &
implementation

- The MovementBehavior factory

- The DynamicBlending behavior

Design Tip #1: Because all movement
behaviors behave similarly, we can  

group them in a single interface  
(go to Eclipse, Rogelio)

Design Tip #2: Target the development 
of very basic behaviors and design 

ways to combine them fluidly

<3

